Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 104202    DOI: 10.1088/1674-1056/ad6420
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Imaging through scattering layers using a near-infrared low-spatial-coherence fiber random laser

Anda Shi(史安达)1,†, Zeyu Wang(王泽宇)1,†, Chenxi Duan(段辰锡)2,†, Zhao Wang(王昭)1,‡, and Weili Zhang(张伟利)1
1 School of Information and Communication Engineering, University of Electronic Science & Technology of China, Chengdu 611731, China;
2 Yingcai Honors College, University of Electronic Science & Technology of China, Chengdu 611731, China
Abstract  Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objects from disordered speckle patterns, achieving imaging through scattering layers. However, the lighting efficiency and field of view of existing speckle-correlated imaging systems are limited. Here, a near-infrared low spatial coherence fiber random laser illumination method is proposed to address the above limitations. Through the utilization of random Rayleigh scattering within dispersion-shifted fibers to provide feedback, coupled with stimulated Raman scattering for amplification, a near-infrared fiber random laser exhibiting a high spectral density and extremely low spatial coherence is generated. Based on the designed fiber random laser, speckle-correlated imaging through scattering layers is achieved, with high lighting efficiency and a large imaging field of view. This work improves the performance of speckle-correlated imaging and enriches the research on imaging through scattering medium.
Keywords:  fiber random laser      speckle-correlated imaging      scattering medium      spatial coherence  
Received:  13 May 2024      Revised:  09 July 2024      Accepted manuscript online:  17 July 2024
PACS:  42.25.Dd (Wave propagation in random media)  
  42.30.-d (Imaging and optical processing)  
  42.55.Ye (Raman lasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62375040 and 11974071) and the Sichuan Science and Technology Program (Grant Nos. 2022ZYD0108 and 2023JDRC0030).
Corresponding Authors:  Zhao Wang     E-mail:  z_wanguestc@outlook.com

Cite this article: 

Anda Shi(史安达), Zeyu Wang(王泽宇), Chenxi Duan(段辰锡), Zhao Wang(王昭), and Weili Zhang(张伟利) Imaging through scattering layers using a near-infrared low-spatial-coherence fiber random laser 2024 Chin. Phys. B 33 104202

[1] Yu Z, Li H, Zhong T, Park J H, Cheng S, Woo CM, Zhao Q, Yao J, Zhou Y, Huang X, Pang W, Yoon H, Shen Y, Liu H, Zheng Y, Park Y, Wang L V and Lai P 2022 The Innovation 3 100292
[2] Yang J, He Q, Liu L, Qu Y, Shao R, Song B and Zhao Y 2021 Light Sci. Appl. 10 149
[3] Woo C M, Zhao Q, Zhong T, Li H, Yu Z and Lai P 2022 APL Photon. 7 046109
[4] Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C and Gigan S 2010 Phys. Rev. Lett. 104 100601
[5] Lee K and Park Y 2016 Nat. Commun. 7 13359
[6] Ma R, Luo K H, Pokharel S, Wang Z, Korotkova O, He J S, Zhang W L, Fan D Y, Gomes A S L and Liu J 2024 Optica 11 595
[7] Li S, Deng M, Lee J, Sinha A and Barbastathis G 2018 Optica 7 803
[8] Li Y, Xue Y and Tian L 2018 Optica 5 1181
[9] Lyu M, Wang H, Li G, Zheng S and Situ G 2019 Adv. Photon. 1 036002
[10] Zhu S, Guo E, Gu J, Bai L F and Hang J 2021 Photon. Res. 9 B220
[11] Bertolotti J, Van Putten E G, Blum C, Lagendijk A, Vos W L and Mosk A P 2012 Nature 491 232
[12] Katz O, Heidmann P, Fink M and Gigan S 2014 Nat. Photon. 8 784
[13] Ma R, Wang Z, Wang W Y, Zhang Y, Liu J, Zhang W L, Gomes A S L and Fan D Y 2021 Opt. Lasers Eng. 141 106567
[14] Sahoo S K, Tang D and Dang C 2017 Optica 4 1209
[15] Zhu L, Soldevila F, Moretti C, d’Arco A, Boniface A, Shao X, De Aguiar H B and Gigan S 2022 Nat. Commun. 13 1447
[16] Wang D, Sahoo S K, Zhu X W, Adamo G and Dang C 2021 Nat. Commun. 1 3150
[17] Horisaki R, Okamoto Y and Tanida J S 2019 Opt. Lett. 44 4032
[18] Li X, Greenberg J A and Gehm M E 2019 Optica 6 864
[19] Wu T, Katz O, Shao X and Gigan S 2016 Opt. Lett. 41 5003
[20] Lu D, Liao M, He W, Giancarlo P, Wolfgang O and Peng X 2020 Opt. Laser Eng. 124 105815
[21] Xu X, Xie X, Thendiyammal A, Zhuang H, Xie J, Liu Y, Zhou J and Allard P M 2018 Opt. Express 26 15073
[22] Wu T, Dong J, Shao X and Gigan S 2017 Opt. Express 25 27182
[23] Liu H, Liu Z, Chen M, Han S and Wang L V 2019 Photon. Res. 7 1323
[24] Jacques S L 2013 Phys. Med. Biol. 58 R37
[25] Ma R, Wang Z, Zhang H H, Zhang W L and Rao Y J 2020 Opt. Lett. 45 3816
[26] Yang Q, Li Y, Zou H, Mei J, Xu E M and Zhang Z X 2024 Chin. Phys. B 33 024206
[27] Wang S, Zhang W, Yang N, Ma R, Zhang Y, Wang Z, Zhang J and Rao Y 2021 Ann. Phys. 533 2100390
[28] Ma R, Rao Y J, Zhang W L and Hu B 2018 IEEE J. Sel. Top. Quant. 25 1
[29] Redding B, Ahmadi P, Mokan V, Seifert M, Choma M A and Cao H 2015 Opt. Lett. 40 4607
[30] Redding B, Choma M A and Cao H 2012 Nat. Photon. 6 355
[31] Wang Z, Ma R, Liu J, He J and Zhang W 2023 Appl. Phys. Lett. 122 171101
[1] Principle of subtraction ghost imaging in scattering medium
Qin Fu(付芹), Yanfeng Bai(白艳锋), Wei Tan(谭威), Xianwei Huang(黄贤伟), Suqin Nan(南苏琴), and Xiquan Fu(傅喜泉). Chin. Phys. B, 2023, 32(6): 064203.
[2] Lensless ghost imaging through the strongly scattering medium
Zhe Yang(杨哲), Lianjie Zhao(赵连洁), Xueliang Zhao(赵学亮), Wei Qin(秦伟), Junlin Li(李俊林). Chin. Phys. B, 2016, 25(2): 024202.
[3] Spatial coherence resonance induced by coloured noise and parameter diversity in a neuronal network
Sun Xiao-Juan(孙晓娟) and Lu Qi-Shao(陆启韶). Chin. Phys. B, 2010, 19(4): 040504.
No Suggested Reading articles found!