Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 105201    DOI: 10.1088/1674-1056/ad6250
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Experimental studies of H2/Ar plasma in a cylindrical inductive discharge with an expansion region

Shi-Bo Li(李世博), Si-Yu Xing(邢思雨), Fei Gao(高飞)†, and You-Nian Wang(王友年)
Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
Abstract  The electrical parameters of H$_{2}$/Ar plasma in a cylindrical inductive discharge with an expansion region are investigated by a Langmuir probe, where Ar fractions range from 0% to 100%. The influence of gas composition and pressure on electron density, the effective electron temperature and the electron energy probability functions (EEPFs) at different spatial positions are present. In driver region, with the introduction of a small amount of Ar at 0.3 Pa, there is a rapid increase in electron density accompanied by a decrease in the effective electron temperature. Additionally, the shape of the EEPF transitions from a three-temperature distribution to a bi-Maxwellian distribution due to an increase in electron-electron collision. However, this phenomenon resulting from the changes in gas composition vanishes at 5 Pa due to the prior depletion of energetic electrons caused by the increase in pressure during hydrogen discharge. The EEPFs for the total energy in expansion region is coincident to these in the driver region at 0.3 Pa, as do the patterns of electron density variation between these two regions for differing Ar fractions. At 5 Pa, as the discharge transitions from H$_{2}$ to Ar, the EEPFs evolved from a bi-Maxwellian distribution with pronounced low energy electrons to a Maxwellian distribution in expansion region. This evolve may be attributed to a reduction in molecular vibrational excitation reactions of electrons during transport and the transition from localized electron dynamics in hydrogen discharge to non-localized electron dynamics in argon discharge. In order to validate the experimental results, we use the COMSOL simulation software to calculate electrical parameters under the same conditions. The evolution and spatial distribution of the electrical parameters of the simulation results agree well with the trend of the experimental results.
Keywords:  inductively coupled plasma      transmission and distribution      energy distribution functions  
Received:  07 May 2024      Revised:  20 June 2024      Accepted manuscript online:  12 July 2024
PACS:  52.25.-b (Plasma properties)  
  52.25.Fi (Transport properties)  
  52.50.-b (Plasma production and heating)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11935005 and 12075049) and the National Key Research and Development Program of China (Grant No. 2017YFE0300106).
Corresponding Authors:  Fei Gao     E-mail:  fgao@dlut.edu.cn

Cite this article: 

Shi-Bo Li(李世博), Si-Yu Xing(邢思雨), Fei Gao(高飞), and You-Nian Wang(王友年) Experimental studies of H2/Ar plasma in a cylindrical inductive discharge with an expansion region 2024 Chin. Phys. B 33 105201

[1] Shul R, Willison C, Bridges M, Han J, Lee J, Pearton S, Abernathy C, MacKenzie J, Donovan S, Zhang L and Lester L 1998 J. Vac. Sci. Technol. Vac. Surf. Films 16 1621
[2] Bae J W, Jeong C H, Kim H K, Kim K K, Cho N G, Seong T Y, Park S J, Adesida I and Yeom G Y 2003 Jpn. J. Appl. Phys. 42 L535
[3] Curley G A, Gatilova L, Guilet S, Bouchoule S, Gogna G S, Sirse N, Karkari S and Booth J P 2010 J. Vac. Sci. Technol. Vac. Surf. Films 28 360
[4] Faraz T, Arts K, Karwal S, Knoops H C and Kessels W M 2019 Plasma Sources Sci. Technol. 28 024002
[5] Ye R, Murphy A B and Ishigaki T 2007 Plasma Chem. Plasma Process. 27 189
[6] Tanaka Y 2009 Thin Solid Films 518 936
[7] Banerjee A and Das D 2015 Appl. Surf. Sci. 330 134
[8] Speth E, Falter H, Franzen P, Fantz U, Bandyopadhyay M, Christ S, Encheva A, Fröschle M, Holtum D, Heinemann B, Kraus W, Lorenz A, Martens Ch, McNeely P, Obermayer S, Riedl R, Süss R, Tanga A, Wilhelm R and Wünderlich D 2006 Nucl. Fusion 46 S220
[9] Froschle M, Speth E, Falter H, Fantz U, Franzen P, Riedl R, Heinemann B, Kraus W, Martens C, McNeely P, Tanga A, Holtum D and Encheva A 2005 SOFE 05, 26-29 September 2005, Knoxville, Tennessee, TN, USA p. 1
[10] Hemsworth R, Decamps H, Graceffa J, Schunke B, Tanaka M, Dremel M, Tanga A, De Esch H, Geli F, Milnes J, Inoue T, Marcuzzi D, Sonato P and Zaccaria P 2009 Nucl. Fusion 49 045006
[11] Franzen P, Falter H, Fantz U, Kraus W, Berger M, Christ-Koch S, Fröschle M, Gutser R, Heinemann B, Hilbert S, Leyer S, Martens C, McNeely P, Riedl R, Speth E and Wünderlich D 2007 Nucl. Fusion 47 264
[12] Heinemann B, Fantz U, Kraus W, Wünderlich D, Bonomo F, Froeschle M, Mario I, Nocentini R, Riedl R and Wimmer C 2018 Fusion Eng. Des. 136 569
[13] Serianni G, Toigo V, Bigi M, Boldrin M, Chitarin G, Dal Bello S, Grando L, Luchetta A, Marcuzzi D, Pasqualotto R and others 2019 Fusion Eng. Des. 146 2539
[14] Fantz U, Bonomo F, Fröschle M, Heinemann B, Hurlbatt A, Kraus W, Schiesko L, Nocentini R, Riedl R and Wimmer C 2019 Fusion Eng. Des. 146 212
[15] Fox-Lyon N, Oehrlein G, Ning N and Graves D 2011 J. Appl. Phys. 110 104314
[16] Moon C S and Han J G 2008 Thin Solid Films 516 6560
[17] Choi J S, Cho D H, Lim E T and Chung C W 2019 J. Nanosci. Nanotechnol. 19 6506
[18] He Y, Su Y, Zhu M, Cao B and Dong B 2012 Sci. China Phys. Mech. Astron. 55 2070
[19] Carazzetti P, Weichart J, Erhart A, Elghazzali M and Strolz E 2020 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), 03-30 June 2020, Orlando, Florida, USA, p. 1711
[20] Das D and Karmakar L 2017 AIP Conf. Proc. 1832 050065
[21] Karmakar L and Das D 2020 J. Alloys Compd. 847 155352
[22] Lim J W M, Huang S, Chan C S, Xu S, Wei D, Guo Y, Xu L and Ostrikov K 2016 Procedia Eng. 139 147
[23] Lim J, Huang S, Xu L, Lim Y, Loh Y, Chan C, Bazaka K, Levchenko I and Xu S 2018 Sol. Energy 171 841
[24] Gudmundsson J T 1998 Plasma Sources Sci. Technol. 7 330
[25] Gudmundsson J T 1999 Plasma Sources Sci. Technol. 8 58
[26] Kimura T and Kasugai H 2010 J. Appl. Phys. 107 083308
[27] Hjartarson A, Thorsteinsson E and Gudmundsson J 2010 Plasma Sources Sci. Technol. 19 065008
[28] Sode M, Schwarz-Selinger T and Jacob W 2013 J. Appl. Phys. 114 063302
[29] Sode M, Schwarz-Selinger T, Jacob W and Kersten H 2014 J. Appl. Phys. 116 013302
[30] Fox-Lyon N, Knoll A, Franek J, Demidov V, Godyak V, Koepke M and Oehrlein G 2013 J. Phys. Appl. Phys. 46 485202
[31] Fox-Lyon N and Oehrlein G S 2014 J. Vac. Sci. Technol. B 32 041206
[32] Huh S R, Kim N K, Jung B K, Chung K J, Hwang Y S and Kim G H 2015 Phys. Plasmas 22 033506
[33] Yang W, Li H, Gao F and Wang Y N 2018 Plasma Sources Sci. Technol. 27 075006
[34] Gao F, Zhang Y R, Li H, Liu Y and Wang Y N 2017 Phys. Plasmas 24 073508
[35] Li H, Liu Y, Zhang Y R, Gao F and Wang Y N 2017 J. Appl. Phys. 121 233302
[36] Gao F, Li H, Yang W, Liu J, Zhang Y R and Wang Y N 2018 Phys. Plasmas 25 013515
[37] Li H, Gao F, Wen D Q, Yang W, Du P C and Wang Y N 2019 J. Appl. Phys. 125 173303
[38] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn. (New York: Wiley)
[39] Petrov G and Giuliani J 2001 J. Appl. Phys. 90 619
[40] Janev R K, Reiter D and Samm U 2003 Collision processes in lowtemperature hydrogen plasmas (Forschungszentrum Jülich: Zentral- bibliothek)
[41] Yoon J S, Song M Y, Han J M, Hwang S H, Chang W S, Lee B and Itikawa Y 2008 J. Phys. Chem. Ref. Data 37 913
[42] Janev R K, Langer W D, Evans K and Post D E 1987 Elementary Processes in Hydrogen-Helium Plasmas- Cross Sections and Reaction Rate Coefficients (Berlin: Springer-Verlag)
[43] Bowers M, Elleman D and King Jr J 1969 J. Chem. Phys. 50 4787
[44] Kudryavtsev A and Serditov K Y 2012 Phys. Plasmas 19 073504
[45] Bogaerts A and Gijbels R 1995 Phys. Rev. A 52 3743
[46] Godyak V A, Piejak R and Alexandrovich B 2002 Plasma Sources Sci. Technol. 11 525
[47] Abdel-Fattah E and Sugai H 2013 Phys. Plasmas 20 023501
[48] Kristof J, Annušová A, Anguš M, Veis P, Yang X, Angot T, Roubin P and Cartry G 2016 Phys. Scr. 91 074009
[1] Power transfer efficiency in an air-breathing radio frequency ion thruster
Gao-Huang Huang(黄高煌), Hong Li(李宏), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2024, 33(7): 075201.
[2] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[3] Time-resolved radial uniformity of pulse-modulated inductively coupled O2/Ar plasmas
Wei Liu(刘巍), Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), You-Nian Wang(王友年), and Yong-Tao Zhao(赵永涛). Chin. Phys. B, 2021, 30(6): 065202.
[4] Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
Ming-Hao Yu(喻明浩), Zhe Wang(王哲), Ze-Yang Qiu(邱泽洋), Bo Lv(吕博), and Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2021, 30(6): 065201.
[5] Quasi-delta negative ions density of Ar/O2 inductively coupled plasma at very low electronegativity
Shu-Xia Zhao(赵书霞). Chin. Phys. B, 2021, 30(5): 055201.
[6] Spatio-temporal measurements of overshoot phenomenon in pulsed inductively coupled discharge
Xiang-Yun Lv(吕翔云), Fei Gao(高飞), Quan-Zhi Zhang(张权治), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(4): 045202.
[7] Effect of hydrogen content on dielectric strength of the silicon nitride film deposited by ICP-CVD
Yudong Zhang(张玉栋), Jiale Tang(唐家乐), Yongjie Hu(胡永杰), Jie Yuan(袁杰), Lulu Guan(管路路), Xingyu Li(李星雨), Hushan Cui(崔虎山), Guanghui Ding(丁光辉), Xinying Shi(石新颖), Kaidong Xu(许开东), and Shiwei Zhuang(庄仕伟). Chin. Phys. B, 2021, 30(4): 048103.
[8] Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma
Peng-Cheng Du(杜鹏程), Fei Gao(高飞, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(3): 035202.
[9] Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas
Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), Jia Liu(刘佳), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(4): 045202.
[10] Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows
Shu-Xia Zhao(赵书霞), Zhao Feng(丰曌). Chin. Phys. B, 2018, 27(12): 124701.
[11] Influence of a centered dielectric tube on inductively coupled plasma source: Chamber structures and plasma characteristics
Zhen-Hua Bi(毕振华), Yi Hong(洪义), Guang-Jiu Lei(雷光玖), Shuai Wang(王帅), You-Nian Wang(王友年), Dong-Ping Liu(刘东平). Chin. Phys. B, 2017, 26(7): 075203.
[12] Plasma-assisted surface treatment for low-temperature annealed ohmic contact on AlGaN/GaN heterostructure field-effect transistors
Lei Wang(王磊), Jiaqi Zhang(张家琦), Liuan Li(李柳暗), Yutaro Maeda(前田裕太郎), Jin-Ping Ao(敖金平). Chin. Phys. B, 2017, 26(3): 037201.
[13] Evaluation of a gate-first process for AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with low ohmic annealing temperature
Liuan Li(李柳暗), Jiaqi Zhang(张家琦), Yang Liu(刘扬), Jin-Ping Ao(敖金平). Chin. Phys. B, 2016, 25(3): 038503.
[14] Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model
Xu Hui-Jing (徐会静), Zhao Shu-Xia (赵书霞), Gao Fei (高飞), Zhang Yu-Ru (张钰如), Li Xue-Chun (李雪春), Wang You-Nian (王友年). Chin. Phys. B, 2015, 24(11): 115201.
[15] Electronic dynamic behavior in inductively coupled plasmas with radio-frequency bias
Gao Fei (高飞), Zhang Yu-Ru (张钰如), Zhao Shu-Xia (赵书霞), Li Xue-Chun (李雪春), Wang You-Nian (王友年). Chin. Phys. B, 2014, 23(11): 115202.
No Suggested Reading articles found!