PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Experimental studies of H2/Ar plasma in a cylindrical inductive discharge with an expansion region |
Shi-Bo Li(李世博), Si-Yu Xing(邢思雨), Fei Gao(高飞)†, and You-Nian Wang(王友年) |
Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract The electrical parameters of H$_{2}$/Ar plasma in a cylindrical inductive discharge with an expansion region are investigated by a Langmuir probe, where Ar fractions range from 0% to 100%. The influence of gas composition and pressure on electron density, the effective electron temperature and the electron energy probability functions (EEPFs) at different spatial positions are present. In driver region, with the introduction of a small amount of Ar at 0.3 Pa, there is a rapid increase in electron density accompanied by a decrease in the effective electron temperature. Additionally, the shape of the EEPF transitions from a three-temperature distribution to a bi-Maxwellian distribution due to an increase in electron-electron collision. However, this phenomenon resulting from the changes in gas composition vanishes at 5 Pa due to the prior depletion of energetic electrons caused by the increase in pressure during hydrogen discharge. The EEPFs for the total energy in expansion region is coincident to these in the driver region at 0.3 Pa, as do the patterns of electron density variation between these two regions for differing Ar fractions. At 5 Pa, as the discharge transitions from H$_{2}$ to Ar, the EEPFs evolved from a bi-Maxwellian distribution with pronounced low energy electrons to a Maxwellian distribution in expansion region. This evolve may be attributed to a reduction in molecular vibrational excitation reactions of electrons during transport and the transition from localized electron dynamics in hydrogen discharge to non-localized electron dynamics in argon discharge. In order to validate the experimental results, we use the COMSOL simulation software to calculate electrical parameters under the same conditions. The evolution and spatial distribution of the electrical parameters of the simulation results agree well with the trend of the experimental results.
|
Received: 07 May 2024
Revised: 20 June 2024
Accepted manuscript online: 12 July 2024
|
PACS:
|
52.25.-b
|
(Plasma properties)
|
|
52.25.Fi
|
(Transport properties)
|
|
52.50.-b
|
(Plasma production and heating)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11935005 and 12075049) and the National Key Research and Development Program of China (Grant No. 2017YFE0300106). |
Corresponding Authors:
Fei Gao
E-mail: fgao@dlut.edu.cn
|
Cite this article:
Shi-Bo Li(李世博), Si-Yu Xing(邢思雨), Fei Gao(高飞), and You-Nian Wang(王友年) Experimental studies of H2/Ar plasma in a cylindrical inductive discharge with an expansion region 2024 Chin. Phys. B 33 105201
|
[1] Shul R, Willison C, Bridges M, Han J, Lee J, Pearton S, Abernathy C, MacKenzie J, Donovan S, Zhang L and Lester L 1998 J. Vac. Sci. Technol. Vac. Surf. Films 16 1621 [2] Bae J W, Jeong C H, Kim H K, Kim K K, Cho N G, Seong T Y, Park S J, Adesida I and Yeom G Y 2003 Jpn. J. Appl. Phys. 42 L535 [3] Curley G A, Gatilova L, Guilet S, Bouchoule S, Gogna G S, Sirse N, Karkari S and Booth J P 2010 J. Vac. Sci. Technol. Vac. Surf. Films 28 360 [4] Faraz T, Arts K, Karwal S, Knoops H C and Kessels W M 2019 Plasma Sources Sci. Technol. 28 024002 [5] Ye R, Murphy A B and Ishigaki T 2007 Plasma Chem. Plasma Process. 27 189 [6] Tanaka Y 2009 Thin Solid Films 518 936 [7] Banerjee A and Das D 2015 Appl. Surf. Sci. 330 134 [8] Speth E, Falter H, Franzen P, Fantz U, Bandyopadhyay M, Christ S, Encheva A, Fröschle M, Holtum D, Heinemann B, Kraus W, Lorenz A, Martens Ch, McNeely P, Obermayer S, Riedl R, Süss R, Tanga A, Wilhelm R and Wünderlich D 2006 Nucl. Fusion 46 S220 [9] Froschle M, Speth E, Falter H, Fantz U, Franzen P, Riedl R, Heinemann B, Kraus W, Martens C, McNeely P, Tanga A, Holtum D and Encheva A 2005 SOFE 05, 26-29 September 2005, Knoxville, Tennessee, TN, USA p. 1 [10] Hemsworth R, Decamps H, Graceffa J, Schunke B, Tanaka M, Dremel M, Tanga A, De Esch H, Geli F, Milnes J, Inoue T, Marcuzzi D, Sonato P and Zaccaria P 2009 Nucl. Fusion 49 045006 [11] Franzen P, Falter H, Fantz U, Kraus W, Berger M, Christ-Koch S, Fröschle M, Gutser R, Heinemann B, Hilbert S, Leyer S, Martens C, McNeely P, Riedl R, Speth E and Wünderlich D 2007 Nucl. Fusion 47 264 [12] Heinemann B, Fantz U, Kraus W, Wünderlich D, Bonomo F, Froeschle M, Mario I, Nocentini R, Riedl R and Wimmer C 2018 Fusion Eng. Des. 136 569 [13] Serianni G, Toigo V, Bigi M, Boldrin M, Chitarin G, Dal Bello S, Grando L, Luchetta A, Marcuzzi D, Pasqualotto R and others 2019 Fusion Eng. Des. 146 2539 [14] Fantz U, Bonomo F, Fröschle M, Heinemann B, Hurlbatt A, Kraus W, Schiesko L, Nocentini R, Riedl R and Wimmer C 2019 Fusion Eng. Des. 146 212 [15] Fox-Lyon N, Oehrlein G, Ning N and Graves D 2011 J. Appl. Phys. 110 104314 [16] Moon C S and Han J G 2008 Thin Solid Films 516 6560 [17] Choi J S, Cho D H, Lim E T and Chung C W 2019 J. Nanosci. Nanotechnol. 19 6506 [18] He Y, Su Y, Zhu M, Cao B and Dong B 2012 Sci. China Phys. Mech. Astron. 55 2070 [19] Carazzetti P, Weichart J, Erhart A, Elghazzali M and Strolz E 2020 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), 03-30 June 2020, Orlando, Florida, USA, p. 1711 [20] Das D and Karmakar L 2017 AIP Conf. Proc. 1832 050065 [21] Karmakar L and Das D 2020 J. Alloys Compd. 847 155352 [22] Lim J W M, Huang S, Chan C S, Xu S, Wei D, Guo Y, Xu L and Ostrikov K 2016 Procedia Eng. 139 147 [23] Lim J, Huang S, Xu L, Lim Y, Loh Y, Chan C, Bazaka K, Levchenko I and Xu S 2018 Sol. Energy 171 841 [24] Gudmundsson J T 1998 Plasma Sources Sci. Technol. 7 330 [25] Gudmundsson J T 1999 Plasma Sources Sci. Technol. 8 58 [26] Kimura T and Kasugai H 2010 J. Appl. Phys. 107 083308 [27] Hjartarson A, Thorsteinsson E and Gudmundsson J 2010 Plasma Sources Sci. Technol. 19 065008 [28] Sode M, Schwarz-Selinger T and Jacob W 2013 J. Appl. Phys. 114 063302 [29] Sode M, Schwarz-Selinger T, Jacob W and Kersten H 2014 J. Appl. Phys. 116 013302 [30] Fox-Lyon N, Knoll A, Franek J, Demidov V, Godyak V, Koepke M and Oehrlein G 2013 J. Phys. Appl. Phys. 46 485202 [31] Fox-Lyon N and Oehrlein G S 2014 J. Vac. Sci. Technol. B 32 041206 [32] Huh S R, Kim N K, Jung B K, Chung K J, Hwang Y S and Kim G H 2015 Phys. Plasmas 22 033506 [33] Yang W, Li H, Gao F and Wang Y N 2018 Plasma Sources Sci. Technol. 27 075006 [34] Gao F, Zhang Y R, Li H, Liu Y and Wang Y N 2017 Phys. Plasmas 24 073508 [35] Li H, Liu Y, Zhang Y R, Gao F and Wang Y N 2017 J. Appl. Phys. 121 233302 [36] Gao F, Li H, Yang W, Liu J, Zhang Y R and Wang Y N 2018 Phys. Plasmas 25 013515 [37] Li H, Gao F, Wen D Q, Yang W, Du P C and Wang Y N 2019 J. Appl. Phys. 125 173303 [38] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn. (New York: Wiley) [39] Petrov G and Giuliani J 2001 J. Appl. Phys. 90 619 [40] Janev R K, Reiter D and Samm U 2003 Collision processes in lowtemperature hydrogen plasmas (Forschungszentrum Jülich: Zentral- bibliothek) [41] Yoon J S, Song M Y, Han J M, Hwang S H, Chang W S, Lee B and Itikawa Y 2008 J. Phys. Chem. Ref. Data 37 913 [42] Janev R K, Langer W D, Evans K and Post D E 1987 Elementary Processes in Hydrogen-Helium Plasmas- Cross Sections and Reaction Rate Coefficients (Berlin: Springer-Verlag) [43] Bowers M, Elleman D and King Jr J 1969 J. Chem. Phys. 50 4787 [44] Kudryavtsev A and Serditov K Y 2012 Phys. Plasmas 19 073504 [45] Bogaerts A and Gijbels R 1995 Phys. Rev. A 52 3743 [46] Godyak V A, Piejak R and Alexandrovich B 2002 Plasma Sources Sci. Technol. 11 525 [47] Abdel-Fattah E and Sugai H 2013 Phys. Plasmas 20 023501 [48] Kristof J, Annušová A, Anguš M, Veis P, Yang X, Angot T, Roubin P and Cartry G 2016 Phys. Scr. 91 074009 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|