CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As) |
Yunxi Qi(戚云西)1, Jun Zhao(赵俊)1,†, and Hui Zeng(曾晖)2,‡ |
1 New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2 School of Microelectronics, Nanjing University of Science and Technology, Nanjing 210094, China |
|
|
Abstract Exploring novel two-dimensional (2D) valleytronic materials has an essential impact on the design of spintronic and valleytronic devices. Our first principles calculation results reveal that the Janus SWSi$X_{2}$ ($X = {\rm N}$, P, As) monolayer has excellent dynamical and thermal stability. Owing to strong spin-orbit coupling (SOC), the SWSi$X_{2}$ monolayer exhibits a valence band spin splitting of up to 0.49 eV, making it promising 2D semiconductor for valleytronic applications. The opposite Berry curvatures and optical selection rules lead to the coexistence of valley and spin Hall effects in the SWSi$X_{2}$ monolayer. Moreover, the optical transition energies can be remarkably modulated by the in-plane strains. Large tensile (compressive) in-plane strains can achieve spin flipping in the SWSiN$_{2}$ monolayer, and induce both SWSiP$_{2}$ and SWSiAs$_{2}$ monolayers transit from semiconductor to metal. Our research provides new 2D semiconductor candidates for designing high-performance valleytronic devices.
|
Received: 07 March 2024
Revised: 27 May 2024
Accepted manuscript online: 09 July 2024
|
PACS:
|
63.20.dk
|
(First-principles theory)
|
|
68.35.-p
|
(Solid surfaces and solid-solid interfaces: structure and energetics)
|
|
72.25.Dc
|
(Spin polarized transport in semiconductors)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62174088 and 62371238). |
Corresponding Authors:
Jun Zhao, Hui Zeng
E-mail: zhaojun@njupt.edu.cn;zenghui@njust.edu.cn
|
Cite this article:
Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖) Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As) 2024 Chin. Phys. B 33 096302
|
[1] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055 [2] He M, Rivera P, Tuan D V, Wilson N P, Yang M, Taniguchi T, Watanabe K, Yan J, Mandrus D G, Yu H, Dery H, Yao W and Xu X 2020 Nat. Commun. 11 618 [3] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809 [4] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490 [5] Kim Y and Lee J D 2019 Phys. Rev. Appl. 11 034048 [6] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802 [7] Xu L, Yang M, Shen L, Zhou J, Zhu T and Feng Y P 2018 Phys. Rev. B 97 041405 [8] Ohkawa F J and Uemura Y 1977 J. Phys. Soc. Jpn. 43 917 [9] Gunawan O, Habib B, De Poortere E P and Shayegan M 2006 Phys. Rev. B 74 155436 [10] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [11] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494 [12] Singh N and Schwingenschlogl U 2017 Adv. Mater. 29 1600970 [13] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344 [14] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489 [15] Chang M C, Ho P H, Tseng M F, Lin F Y, Hou C H, Lin I K, Wang H, Huang P P, Chiang C H, Yang Y C, Wang I T, Du H Y, Wen C Y, Shyue J J, Chen C W, Chen K H, Chiu P W and Chen L C 2020 Nat. Commun. 11 3682 [16] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 [17] Hong Y L, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun D M, Chen X Q, Cheng H M and Ren W 2020 Science 369 670 [18] Zhao H, Yang G, Liu Y, Yang X, Gu Y, Wei C, Xie Z, Zhang Q, Bian B, Zhang X, Huo X and Lu N 2021 ACS Appl. Electron. Mater. 3 5086 [19] Yuan J, Wei Q, Sun M, Yan X, Cai Y, Shen L and Schwingenschlögl U 2022 Phys. Rev. B 105 195151 [20] Hasani N, Shalchian M, Rajabi-Maram A and Touski S B 2023 IEEE Trans. Electron Dev. 70 5415 [21] Nandan K, Bhowmick S, Chauhan Y S and Agarwal A 2023 Phys. Rev. Appl. 19 064058 [22] Sheoran S, Monga S, Phutela A and Bhattacharya S 2023 J. Phys. Chem. Lett. 14 1494 [23] Zhao J, Jin X, Zeng H, Yao C and Yan G 2021 Appl. Phys. Lett. 119 213101 [24] Cao L, Zhou G, Wang Q, Ang L K and Ang Y S 2021 Appl. Phys. Lett. 118 013106 [25] Zhang X, Zheng J Y, Xiang Y C, Wu D, Fan J, Sun Y Y, Chen L J, Gan L Y and Zhou X 2023 Appl. Phys. Lett. 123 023505 [26] Cao L, Deng X, Tang Z k, Tan R and Ang Y S 2024 J. Mater. Chem. C 12 648 [27] Qi Y, Yao C, Zhao J and Zeng H 2023 Phys. Chem. Chem. Phys. 25 28104 [28] Tho C C, Guo S D, Liang S J, Ong W L, Lau C S, Cao L, Wang G and Ang Y S 2023 Appl. Phys. Rev. 10 041307 [29] Guo S D, Mu W Q, Zhu Y T, Han R Y and Ren W C 2021 J. Mater. Chem. C 9 2464 [30] Rudi S G, Soleimani-Amiri S, Rezavand A and Ghobadi N 2023 J. Phys. Chem. Solids 181 111561 [31] Nguyen H T, Cuong N Q, Vi V T T, Hieu N N and Tran L P T 2023 Phys. Chem. Chem. Phys. 25 21468 [32] Zhao J, Qi Y, Yao C and Zeng H 2024 Phys. Rev. B 109 035408 [33] Geng L, Chen K, Lu H, Wang S and Yang Y 2023 Phys. Chem. Chem. Phys. 25 32021 [34] Sibatov R T, Meftakhutdinov R M and Kochaev A I 2022 Appl. Surf. Sci. 585 152465 [35] Nguyen S T, Cuong P V, Cuong N Q and Nguyen C V 2022 Dalton Trans. 51 14338 [36] Gao Z, He Y and Xiong K 2023 Dalton Trans. 52 17416 [37] Tran P T L, Hieu N V, Bui D H, Cuong Q N and Hieu N N 2023 Nanoscale Adv. 5 3104 [38] Dong M M, He H, Niu Y, Wang C K and Fu X X 2023 ACS Appl. Nano Mater. 6 1541 [39] Sun Z, Li X, Zhao Z, Zeng Y, Wei Y and Wang J 2023 J. Mater. Chem. C 11 9815 [40] Zhao J, Qi Y, Yao C and Zeng H 2024 Appl. Phys. Lett. 124 093103 [41] Qi Y, Yao C, Zhao J and Zeng H 2024 J. Mater. Chem. C 12 4417 [42] Chen H X, Yuan X B and Ren J F 2024 Chin. Phys. B 33 047304 [43] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [44] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [45] Blöchl P E 1994 Phys. Rev. B 50 17953 [46] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [47] Heyd J and Scuseria G E 2004 J. Chem. Phys. 121 1187 [48] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [49] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [50] Barnett R N and Landman U 1993 Phys. Rev. B 48 2081 [51] Kim S W, Kim H J, Cheon S and Kim T H 2022 Phys. Rev. Lett. 128 046401 [52] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Comput. Phys. Commun. 267 108033 [53] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272 [54] Qi Y, Yao C, Zhao J and Zeng H 2023 Phys. Rev. B 108 125304 [55] Ke C, Wu Y, Yang W, Wu Z, Zhang C, Li X and Kang J 2019 Phys. Rev. B 100 195435 [56] Andrew R C, Mapasha R E, Ukpong A M and Chetty N 2012 Phys. Rev. B 85 125428 [57] Kormányos A, Zólyomi V, Drummond N D, Rakyta P, Burkard G and Fal’ko V I 2013 Phys. Rev. B 88 045416 [58] Ai H, Liu D, Geng J, Wang S, Lo K H and Pan H 2021 Phys. Chem. Chem. Phys. 23 3144 [59] Mostofi A A, Vanderbilt D, Souza I, Yates J R, Marzari N and Lee Y S 2008 Comput. Phys. Commun. 178 685 [60] Yao Y, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204 [61] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B and Feng J 2012 Nat. Commun. 3 887 [62] Mak K F, Xiao D and Shan J 2018 Nat. Photon. 12 451 [63] Qi Y, Sadi M A, Hu D, Zheng M, Wu Z, Jiang Y and Chen Y P 2023 Adv. Mater. 35 2205714 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|