Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 096302    DOI: 10.1088/1674-1056/ad6077
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As)

Yunxi Qi(戚云西)1, Jun Zhao(赵俊)1,†, and Hui Zeng(曾晖)2,‡
1 New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 School of Microelectronics, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  Exploring novel two-dimensional (2D) valleytronic materials has an essential impact on the design of spintronic and valleytronic devices. Our first principles calculation results reveal that the Janus SWSi$X_{2}$ ($X = {\rm N}$, P, As) monolayer has excellent dynamical and thermal stability. Owing to strong spin-orbit coupling (SOC), the SWSi$X_{2}$ monolayer exhibits a valence band spin splitting of up to 0.49 eV, making it promising 2D semiconductor for valleytronic applications. The opposite Berry curvatures and optical selection rules lead to the coexistence of valley and spin Hall effects in the SWSi$X_{2}$ monolayer. Moreover, the optical transition energies can be remarkably modulated by the in-plane strains. Large tensile (compressive) in-plane strains can achieve spin flipping in the SWSiN$_{2}$ monolayer, and induce both SWSiP$_{2}$ and SWSiAs$_{2}$ monolayers transit from semiconductor to metal. Our research provides new 2D semiconductor candidates for designing high-performance valleytronic devices.
Keywords:  first-principles calculations      two-dimensional      valleytronic      spintronic  
Received:  07 March 2024      Revised:  27 May 2024      Accepted manuscript online:  09 July 2024
PACS:  63.20.dk (First-principles theory)  
  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  72.25.Dc (Spin polarized transport in semiconductors)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62174088 and 62371238).
Corresponding Authors:  Jun Zhao, Hui Zeng     E-mail:  zhaojun@njupt.edu.cn;zenghui@njust.edu.cn

Cite this article: 

Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖) Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As) 2024 Chin. Phys. B 33 096302

[1] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055
[2] He M, Rivera P, Tuan D V, Wilson N P, Yang M, Taniguchi T, Watanabe K, Yan J, Mandrus D G, Yu H, Dery H, Yao W and Xu X 2020 Nat. Commun. 11 618
[3] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[4] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490
[5] Kim Y and Lee J D 2019 Phys. Rev. Appl. 11 034048
[6] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
[7] Xu L, Yang M, Shen L, Zhou J, Zhu T and Feng Y P 2018 Phys. Rev. B 97 041405
[8] Ohkawa F J and Uemura Y 1977 J. Phys. Soc. Jpn. 43 917
[9] Gunawan O, Habib B, De Poortere E P and Shayegan M 2006 Phys. Rev. B 74 155436
[10] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[11] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[12] Singh N and Schwingenschlogl U 2017 Adv. Mater. 29 1600970
[13] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344
[14] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489
[15] Chang M C, Ho P H, Tseng M F, Lin F Y, Hou C H, Lin I K, Wang H, Huang P P, Chiang C H, Yang Y C, Wang I T, Du H Y, Wen C Y, Shyue J J, Chen C W, Chen K H, Chiu P W and Chen L C 2020 Nat. Commun. 11 3682
[16] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[17] Hong Y L, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun D M, Chen X Q, Cheng H M and Ren W 2020 Science 369 670
[18] Zhao H, Yang G, Liu Y, Yang X, Gu Y, Wei C, Xie Z, Zhang Q, Bian B, Zhang X, Huo X and Lu N 2021 ACS Appl. Electron. Mater. 3 5086
[19] Yuan J, Wei Q, Sun M, Yan X, Cai Y, Shen L and Schwingenschlögl U 2022 Phys. Rev. B 105 195151
[20] Hasani N, Shalchian M, Rajabi-Maram A and Touski S B 2023 IEEE Trans. Electron Dev. 70 5415
[21] Nandan K, Bhowmick S, Chauhan Y S and Agarwal A 2023 Phys. Rev. Appl. 19 064058
[22] Sheoran S, Monga S, Phutela A and Bhattacharya S 2023 J. Phys. Chem. Lett. 14 1494
[23] Zhao J, Jin X, Zeng H, Yao C and Yan G 2021 Appl. Phys. Lett. 119 213101
[24] Cao L, Zhou G, Wang Q, Ang L K and Ang Y S 2021 Appl. Phys. Lett. 118 013106
[25] Zhang X, Zheng J Y, Xiang Y C, Wu D, Fan J, Sun Y Y, Chen L J, Gan L Y and Zhou X 2023 Appl. Phys. Lett. 123 023505
[26] Cao L, Deng X, Tang Z k, Tan R and Ang Y S 2024 J. Mater. Chem. C 12 648
[27] Qi Y, Yao C, Zhao J and Zeng H 2023 Phys. Chem. Chem. Phys. 25 28104
[28] Tho C C, Guo S D, Liang S J, Ong W L, Lau C S, Cao L, Wang G and Ang Y S 2023 Appl. Phys. Rev. 10 041307
[29] Guo S D, Mu W Q, Zhu Y T, Han R Y and Ren W C 2021 J. Mater. Chem. C 9 2464
[30] Rudi S G, Soleimani-Amiri S, Rezavand A and Ghobadi N 2023 J. Phys. Chem. Solids 181 111561
[31] Nguyen H T, Cuong N Q, Vi V T T, Hieu N N and Tran L P T 2023 Phys. Chem. Chem. Phys. 25 21468
[32] Zhao J, Qi Y, Yao C and Zeng H 2024 Phys. Rev. B 109 035408
[33] Geng L, Chen K, Lu H, Wang S and Yang Y 2023 Phys. Chem. Chem. Phys. 25 32021
[34] Sibatov R T, Meftakhutdinov R M and Kochaev A I 2022 Appl. Surf. Sci. 585 152465
[35] Nguyen S T, Cuong P V, Cuong N Q and Nguyen C V 2022 Dalton Trans. 51 14338
[36] Gao Z, He Y and Xiong K 2023 Dalton Trans. 52 17416
[37] Tran P T L, Hieu N V, Bui D H, Cuong Q N and Hieu N N 2023 Nanoscale Adv. 5 3104
[38] Dong M M, He H, Niu Y, Wang C K and Fu X X 2023 ACS Appl. Nano Mater. 6 1541
[39] Sun Z, Li X, Zhao Z, Zeng Y, Wei Y and Wang J 2023 J. Mater. Chem. C 11 9815
[40] Zhao J, Qi Y, Yao C and Zeng H 2024 Appl. Phys. Lett. 124 093103
[41] Qi Y, Yao C, Zhao J and Zeng H 2024 J. Mater. Chem. C 12 4417
[42] Chen H X, Yuan X B and Ren J F 2024 Chin. Phys. B 33 047304
[43] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[44] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[45] Blöchl P E 1994 Phys. Rev. B 50 17953
[46] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[47] Heyd J and Scuseria G E 2004 J. Chem. Phys. 121 1187
[48] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[49] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[50] Barnett R N and Landman U 1993 Phys. Rev. B 48 2081
[51] Kim S W, Kim H J, Cheon S and Kim T H 2022 Phys. Rev. Lett. 128 046401
[52] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Comput. Phys. Commun. 267 108033
[53] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272
[54] Qi Y, Yao C, Zhao J and Zeng H 2023 Phys. Rev. B 108 125304
[55] Ke C, Wu Y, Yang W, Wu Z, Zhang C, Li X and Kang J 2019 Phys. Rev. B 100 195435
[56] Andrew R C, Mapasha R E, Ukpong A M and Chetty N 2012 Phys. Rev. B 85 125428
[57] Kormányos A, Zólyomi V, Drummond N D, Rakyta P, Burkard G and Fal’ko V I 2013 Phys. Rev. B 88 045416
[58] Ai H, Liu D, Geng J, Wang S, Lo K H and Pan H 2021 Phys. Chem. Chem. Phys. 23 3144
[59] Mostofi A A, Vanderbilt D, Souza I, Yates J R, Marzari N and Lee Y S 2008 Comput. Phys. Commun. 178 685
[60] Yao Y, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204
[61] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B and Feng J 2012 Nat. Commun. 3 887
[62] Mak K F, Xiao D and Shan J 2018 Nat. Photon. 12 451
[63] Qi Y, Sadi M A, Hu D, Zheng M, Wu Z, Jiang Y and Chen Y P 2023 Adv. Mater. 35 2205714
[1] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[2] Lewis acid-doped transition metal dichalcogenides for ultraviolet-visible photodetectors
Heng Yang(杨恒), Mingjun Ma(马明军), Yongfeng Pei(裴永峰), Yufan Kang(康雨凡), Jialu Yan(延嘉璐), Dong He(贺栋), Changzhong Jiang(蒋昌忠), Wenqing Li(李文庆), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2024, 33(9): 098501.
[3] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[4] GaInX3 (X = S, Se, Te): Ultra-low thermal conductivity and excellent thermoelectric performance
Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Zhong-Ke Ding(丁中科), Wei-Hua Xiao(肖威华), Fang Xie(谢芳), Nan-Nan Luo(罗南南), Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求). Chin. Phys. B, 2024, 33(8): 087302.
[5] A color image encryption scheme based on a 2D coupled chaotic system and diagonal scrambling algorithm
Jingming Su(苏静明), Shihui Fang(方士辉), Yan Hong(洪炎), and Yan Wen(温言). Chin. Phys. B, 2024, 33(7): 070502.
[6] Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin-orbit coupling
Ying Wang(王莹), Dan Li(李丹), Xinying Sun(孙新英), Huiqing Zhang(张惠晴), Han Ma(马晗), Huixin Li(李慧欣), Junfeng Ren(任俊峰), Chuankui Wang(王传奎), and Guichao Hu(胡贵超). Chin. Phys. B, 2024, 33(7): 077101.
[7] Electronic transport evolution across the successive structural transitions in Ni50-xFexTi50 shape memory alloys
Ping He(何萍), Jinying Yang(杨金颖), Qiusa Ren(任秋飒), Binbin Wang(王彬彬), Guangheng Wu(吴光恒), and Enke Liu(刘恩克). Chin. Phys. B, 2024, 33(7): 077201.
[8] RKKY interaction in helical higher-order topological insulators
Sha Jin(金莎), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2024, 33(7): 077503.
[9] Field induced Chern insulating states in twisted monolayer-bilayer graphene
Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Chin. Phys. B, 2024, 33(6): 067301.
[10] Global dust density in two-dimensional complex plasma
Yi-Zhen Zhao(赵逸真), Song-Fen Liu(刘松芬), Wei Kong(孔伟), and Fang Yang(杨芳). Chin. Phys. B, 2024, 33(6): 065201.
[11] Gate-field control of valley polarization in valleytronics
Ting-Ting Zhang(张婷婷), Yilin Han(韩依琳), Run-Wu Zhang(张闰午), and Zhi-Ming Yu(余智明). Chin. Phys. B, 2024, 33(6): 067303.
[12] Effect of strain on structure and electronic properties of monolayer C4N4
Hao Chen(陈昊), Ying Xu(徐瑛), Jia-Shi Zhao(赵家石), and Dan Zhou(周丹). Chin. Phys. B, 2024, 33(5): 057302.
[13] Low-frequency hybridized excess vibrations of two-dimensional glasses
Licun Fu(付立存), Yiming Zheng(郑一鸣), and Lijin Wang(王利近). Chin. Phys. B, 2024, 33(5): 056401.
[14] Regulating the dopant clustering in LiZnAs-based diluted magnetic semiconductor
Zihang Jia(贾子航), Bo Zhou(周波), Zhenyi Jiang(姜振益), and Xiaodong Zhang(张小东). Chin. Phys. B, 2024, 33(5): 058101.
[15] Improving the electrical performances of InSe transistors by interface engineering
Tianjun Cao(曹天俊), Song Hao(郝松), Chenchen Wu(吴晨晨), Chen Pan(潘晨), Yudi Dai(戴玉頔), Bin Cheng(程斌), Shi-Jun Liang(梁世军), and Feng Miao(缪峰). Chin. Phys. B, 2024, 33(4): 047302.
No Suggested Reading articles found!