Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 080305    DOI: 10.1088/1674-1056/ad5321
GENERAL Prev   Next  

Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field

Wen-Tao Lu(卢文韬)1, Sheng-Kai Xia(夏圣开)2, Ai-Qing Chen(陈爱庆)3, Kang-Hao He(何康浩)3, Zeng-Bo Xu(许增博)4, Yi-Han Chen(陈艺涵)5, Yang Wang(汪洋)6, Shi-Yu Ge(葛仕宇)3, Si-Han An(安思瀚)3, Jian-Fei Wu(吴建飞)7, Yi-Han Ma(马艺菡)3, and Guan-Xiang Du(杜关祥)3,†
1 Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
4 School of Economics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
5 School of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
6 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
7 College of Electronic Science and Technology, National University of Defense Technology, Changsha 410000, China
Abstract  We present a quantitative measurement of the horizontal component of the microwave magnetic field of a coplanar waveguide using a quantum diamond probe in fiber format. The measurement results are compared in detail with simulation, showing a good consistence. Further simulation shows fiber diamond probe brings negligible disturbance to the field under measurement compared to bulk diamond. This method will find important applications ranging from electromagnetic compatibility test and failure analysis of high frequency and high complexity integrated circuits.
Keywords:  quantum precision measurement      electromagnetic field      diamond NV center      quantum metrology  
Received:  11 April 2024      Revised:  30 May 2024      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  52.70.Gw (Radio-frequency and microwave measurements)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB2012600).
Corresponding Authors:  Guan-Xiang Du     E-mail:  duguanxiang@njupt.edu.cn

Cite this article: 

Wen-Tao Lu(卢文韬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Kang-Hao He(何康浩), Zeng-Bo Xu(许增博), Yi-Han Chen(陈艺涵), Yang Wang(汪洋), Shi-Yu Ge(葛仕宇), Si-Han An(安思瀚), Jian-Fei Wu(吴建飞), Yi-Han Ma(马艺菡), and Guan-Xiang Du(杜关祥) Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field 2024 Chin. Phys. B 33 080305

[1] Jennings J M, Kar A, Vaidyanathan R 2020 AIP Advances 10 065202
[2] Wu J F, Zheng Y F, Liu P G, Dong M M and Du G X 2021 Int. J. RF Microw. Comput. Aided. Eng. 31 e22650
[3] Fancher C T, Scherer D R, John M C S and MarlowMauger B L S 2021 IEEE Trans. Quantum Eng. 2 1
[4] Liu B, Zhang L H, Liu Z K, Deng Z A, Ding D S, Shi B S and Guo G C 2023 Electromagnetic Science 1 1
[5] Kumar S, Fam H Q, Kübler H, Sheng J T and Shaffer J P 2017 Sci. Rep. 7 42981
[6] Affolderbach C, Du G X, Bandi T, Horsley A, Treutlein P and Mileti G 2015 IEEE Transactions on Instrumentation and Measurement 64 3629
[7] Beveratos A, Brouri R, Poizat J P and Grangier P 2002 Quantum Communication, Computing, and Measurement (New York: Springer) p. 261
[8] Appel P, Neu E, Ganzhorn M, Barfuss A, Batzer M, Gratz M, Tschöpe A and Maletinsky P 2016 Rev. Sci. Instrum. 87 063703
[9] Pham L M, Sage D L, Stanwix P L, Yeung T K, Glenn D, Trifonov A, Cappellaro P, Hemmer P R, Lukin D M, Park H, Yacoby A and Walsworth R L 2011 New J. Phys. 13 045021
[10] Epstein J R, Mendoza F M, Kato Y K and Awschalom D D 2005 Nat. Phys. 1 94
[11] Gaebel T, Domhan M, Popa I, Wittmann C, Neumann P, Jelezko F, Rabeau J R, Stavrias N, Greentree A D, Prawer S, Meijer J, Twamley J, Hemmer P R and Wrachtrup J 2006 Nat. Phys. 2 408
[12] Childress L I 2007 Coherent manipulation of single quantum systems in the solid state, Ph. D. Dissertation (Cambridge: Harvard University)
[13] Barson M S J, Oberg L M, McGuinness L P, Denisenko A, Manson N B, Wrachtrup J and Doherty M W 2021 Nano Lett. 21 2962
[14] Appel1 P, Ganzhorn M, Neu E and Maletinsky P 2015 New J. Phys. 17 112001
[15] Bai R X, Zhu X Y, Yang F, Gao T R, Wang Z R, Yu L Y, Wang J F, Zhou L and Du G X 2022 Chin. Phys. B 31 074203
[16] Bai R X, Yang F, Liu P, Gao T R, Zhou L, Yin X H, Zhu X Y, Ma W H, He F Y, Chen N C, Sun Y, Ma J T, Yu T and Du G X 2022 Appl. Phys. Lett. 120 044003
[17] Li M X, Zhang N, Xu L X, Zhang J X, Bian G D, Fan P C, Wang S X and Yuan H 2023 Phys. Rev. Appl. 19 054088
[18] Chen G B, Gu B X, He W H, Guo Z G and Du G X 2020 IEEE J. Quantum Electron. 56 1
[19] Wang Y P, Zhang R J, Yang Y, Wu Q, Yu Z F and Chen B 2023 Chin. Phys. B 32 070301
[20] Ye J F, Jiao Z, Ma K, Huang Z Y, Lv H J and Jiang F J 2019 Chin. Phys. B 28 047601
[21] Steiner M, Neumann P, Beck J, Jelezko F and Wrachtrup J 2010 Phys. Rev. B 81 035205
[22] Dong M M, Hu Z Z, Liu Y, Yang B, Wang Y J and Du G X 2018 Appl. Phys. Lett. 113 131105
[23] Duan D, Du G X, Kavatamane V K, Arumugam S, Tzeng Y K, Chang H C and Balasubramanian G 2019 Opt. Express 27 6734
[1] Nonlinear time-reversal interferometry with arbitrary quadratic collective-spin interaction
Zhiyao Hu(胡知遥), Qixian Li(李其贤), Xuanchen Zhang(张轩晨), He-Bin Zhang(张贺宾), Long-Gang Huang(黄龙刚), and Yong-Chun Liu(刘永椿). Chin. Phys. B, 2024, 33(8): 080601.
[2] Enhancing quantum metrology for multiple frequencies of oscillating magnetic fields by quantum control
Xin Lei(雷昕), Jingyi Fan(范静怡), and Shengshi Pang(庞盛世). Chin. Phys. B, 2024, 33(6): 060304.
[3] Holevo bound independent of weight matrices for estimating two parameters of a qubit
Chang Niu(牛畅) and Sixia Yu(郁司夏). Chin. Phys. B, 2024, 33(2): 020304.
[4] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[5] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[6] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[7] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
[8] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[9] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[10] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[11] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[12] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[13] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[14] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[15] Super-sensitive phase estimation with coherent boosted light using parity measurements
Lan Xu(许兰), Qing-Shou Tan(谭庆收). Chin. Phys. B, 2018, 27(1): 014203.
No Suggested Reading articles found!