|
|
Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field |
Wen-Tao Lu(卢文韬)1, Sheng-Kai Xia(夏圣开)2, Ai-Qing Chen(陈爱庆)3, Kang-Hao He(何康浩)3, Zeng-Bo Xu(许增博)4, Yi-Han Chen(陈艺涵)5, Yang Wang(汪洋)6, Shi-Yu Ge(葛仕宇)3, Si-Han An(安思瀚)3, Jian-Fei Wu(吴建飞)7, Yi-Han Ma(马艺菡)3, and Guan-Xiang Du(杜关祥)3,† |
1 Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2 School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 3 College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 4 School of Economics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 5 School of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 6 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 7 College of Electronic Science and Technology, National University of Defense Technology, Changsha 410000, China |
|
|
Abstract We present a quantitative measurement of the horizontal component of the microwave magnetic field of a coplanar waveguide using a quantum diamond probe in fiber format. The measurement results are compared in detail with simulation, showing a good consistence. Further simulation shows fiber diamond probe brings negligible disturbance to the field under measurement compared to bulk diamond. This method will find important applications ranging from electromagnetic compatibility test and failure analysis of high frequency and high complexity integrated circuits.
|
Received: 11 April 2024
Revised: 30 May 2024
Accepted manuscript online:
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
52.70.Gw
|
(Radio-frequency and microwave measurements)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB2012600). |
Corresponding Authors:
Guan-Xiang Du
E-mail: duguanxiang@njupt.edu.cn
|
Cite this article:
Wen-Tao Lu(卢文韬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Kang-Hao He(何康浩), Zeng-Bo Xu(许增博), Yi-Han Chen(陈艺涵), Yang Wang(汪洋), Shi-Yu Ge(葛仕宇), Si-Han An(安思瀚), Jian-Fei Wu(吴建飞), Yi-Han Ma(马艺菡), and Guan-Xiang Du(杜关祥) Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field 2024 Chin. Phys. B 33 080305
|
[1] Jennings J M, Kar A, Vaidyanathan R 2020 AIP Advances 10 065202 [2] Wu J F, Zheng Y F, Liu P G, Dong M M and Du G X 2021 Int. J. RF Microw. Comput. Aided. Eng. 31 e22650 [3] Fancher C T, Scherer D R, John M C S and MarlowMauger B L S 2021 IEEE Trans. Quantum Eng. 2 1 [4] Liu B, Zhang L H, Liu Z K, Deng Z A, Ding D S, Shi B S and Guo G C 2023 Electromagnetic Science 1 1 [5] Kumar S, Fam H Q, Kübler H, Sheng J T and Shaffer J P 2017 Sci. Rep. 7 42981 [6] Affolderbach C, Du G X, Bandi T, Horsley A, Treutlein P and Mileti G 2015 IEEE Transactions on Instrumentation and Measurement 64 3629 [7] Beveratos A, Brouri R, Poizat J P and Grangier P 2002 Quantum Communication, Computing, and Measurement (New York: Springer) p. 261 [8] Appel P, Neu E, Ganzhorn M, Barfuss A, Batzer M, Gratz M, Tschöpe A and Maletinsky P 2016 Rev. Sci. Instrum. 87 063703 [9] Pham L M, Sage D L, Stanwix P L, Yeung T K, Glenn D, Trifonov A, Cappellaro P, Hemmer P R, Lukin D M, Park H, Yacoby A and Walsworth R L 2011 New J. Phys. 13 045021 [10] Epstein J R, Mendoza F M, Kato Y K and Awschalom D D 2005 Nat. Phys. 1 94 [11] Gaebel T, Domhan M, Popa I, Wittmann C, Neumann P, Jelezko F, Rabeau J R, Stavrias N, Greentree A D, Prawer S, Meijer J, Twamley J, Hemmer P R and Wrachtrup J 2006 Nat. Phys. 2 408 [12] Childress L I 2007 Coherent manipulation of single quantum systems in the solid state, Ph. D. Dissertation (Cambridge: Harvard University) [13] Barson M S J, Oberg L M, McGuinness L P, Denisenko A, Manson N B, Wrachtrup J and Doherty M W 2021 Nano Lett. 21 2962 [14] Appel1 P, Ganzhorn M, Neu E and Maletinsky P 2015 New J. Phys. 17 112001 [15] Bai R X, Zhu X Y, Yang F, Gao T R, Wang Z R, Yu L Y, Wang J F, Zhou L and Du G X 2022 Chin. Phys. B 31 074203 [16] Bai R X, Yang F, Liu P, Gao T R, Zhou L, Yin X H, Zhu X Y, Ma W H, He F Y, Chen N C, Sun Y, Ma J T, Yu T and Du G X 2022 Appl. Phys. Lett. 120 044003 [17] Li M X, Zhang N, Xu L X, Zhang J X, Bian G D, Fan P C, Wang S X and Yuan H 2023 Phys. Rev. Appl. 19 054088 [18] Chen G B, Gu B X, He W H, Guo Z G and Du G X 2020 IEEE J. Quantum Electron. 56 1 [19] Wang Y P, Zhang R J, Yang Y, Wu Q, Yu Z F and Chen B 2023 Chin. Phys. B 32 070301 [20] Ye J F, Jiao Z, Ma K, Huang Z Y, Lv H J and Jiang F J 2019 Chin. Phys. B 28 047601 [21] Steiner M, Neumann P, Beck J, Jelezko F and Wrachtrup J 2010 Phys. Rev. B 81 035205 [22] Dong M M, Hu Z Z, Liu Y, Yang B, Wang Y J and Du G X 2018 Appl. Phys. Lett. 113 131105 [23] Duan D, Du G X, Kavatamane V K, Arumugam S, Tzeng Y K, Chang H C and Balasubramanian G 2019 Opt. Express 27 6734 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|