CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Current-perpendicular-to-plane transport properties of 2D ferromagnetic material CrTe2 |
Jin Wang(王瑾)1,2, Yu Liu(刘宇)1,2, Taikun Wang(王太坤)1,2, Yongkang Xu(徐永康)1,2, Shuanghai Wang(王双海)1,2, Kun He(何坤)1,2, Yafeng Deng(邓亚峰)1,2, Pengfei Yan(闫鹏飞)1,2, and Liang He(何亮)1,2,† |
1 School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China; 2 State Key Laboratory of Spintronics, Nanjing University, Suzhou 215163, China |
|
|
Abstract Heterostructures of van der Waals (vdW) ferromagnetic materials have become a focal point in research of low-dimensional spintronic devices. The current direction in spin valves is commonly perpendicular to the plane (CPP). However, the transport properties of the CPP mode remain largely unexplored. In this work, current-in-plane (CIP) mode and CPP mode for CrTe$_{2}$ thin films are carefully studied. The temperature-dependent longitudinal resistance transitions from metallic (CIP) to semiconductor behavior (CPP), with the electrical resistivity of CPP increased by five orders of magnitude. More importantly, the transport properties of the CPP can be categorized into a single-gap tunneling-through model with the activation energy ($E_{\rm a}$) of $\sim$ 1.34 meV/gap at 300-150 K, the variable range hopping model with a linear negative magnetoresistance at 150-20 K, and weak localization region with a nonlinear magnetic resistance below 20 K. This study explores the vertical transport in CrTe$_{2}$ materials for the first time, contributing to understand its unique properties and to pave the way for its potential in spin valve devices.
|
Received: 06 May 2024
Revised: 20 June 2024
Accepted manuscript online: 24 June 2024
|
PACS:
|
72.10.-d
|
(Theory of electronic transport; scattering mechanisms)
|
|
75.50.-y
|
(Studies of specific magnetic materials)
|
|
81.05.-t
|
(Specific materials: fabrication, treatment, testing, and analysis)
|
|
85.70.-w
|
(Magnetic devices)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12241403 and 61974061) and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20140054). |
Corresponding Authors:
Liang He
E-mail: heliang@nju.edu.cn
|
Cite this article:
Jin Wang(王瑾), Yu Liu(刘宇), Taikun Wang(王太坤), Yongkang Xu(徐永康), Shuanghai Wang(王双海), Kun He(何坤), Yafeng Deng(邓亚峰), Pengfei Yan(闫鹏飞), and Liang He(何亮) Current-perpendicular-to-plane transport properties of 2D ferromagnetic material CrTe2 2024 Chin. Phys. B 33 097201
|
[1] Lin Z, Peng Y, Wu B, Wang C S, Luo Z C and Yang J B 2022 Chin. Phys. B 8 087506 [2] Arai M, Moriya R and Yabuki N 2015 Appl. Phys. Lett. 107 103107 [3] Tian M, Zhu Y and Jalali M 2021 Front. Nanotechnol. 3 732916 [4] Li Q, Yang M M, Gong C, et al. 2018 Nano Lett. 9 5974 [5] Wang H D, Lei P H and Mao X Y 2022 Chin. Phys. Lett. 39 047601 [6] Li H, Ruan S C and Zeng Y J 2019 Adv. Mater. 27 1900065 [7] Khajetoorians A A, Wiebe J and Chilian B 2011 Science 6033 1062 [8] Lin Z Z and Chen X 2020 Adv. Electron. Mater. 6 1900968 [9] Zhao B, Ngaloy R, Ghosh S, et al. 2023 Adv. Mater. 35 2209113 [10] Yang S X, Zhang T L and Jiang C B 2021 Adv. Sci. 8 2002488 [11] Wu X, Meng H, Kong F, Zhang H Y, Bai Y J and Xu N 2020 Phys. Rev. B 101 125406 [12] Hu C, Yan F, Li Y C and Wang K Y 2021 Chin. Phys. B 9 097505 [13] Jin W, Zhang G, Wu H, Yang L, Zhang W F and Chang H X 2023 Nanoscale 15 5371 [14] Niu Y T, Lu X and Shi Z T 2021 Chin. Phys. B 30 117506 [15] Lin H, Yan F, Hu C, Lv Q S, Zhu W K, Wang Z, Wei Z M, Chang K and Wang K Y 2020 ACS Appl. Mater. Interfaces 12 43921 [16] Wen J, Gaojie Z and Hao W 2023 Chin. Phys. Lett. 40 057301 [17] Wang Z, Sapkota D, Taniguchi T, Watanabe K J, Mandrus D and Morpurgo A F 2018 Nano Lett. 18 4303 [18] Marian D, Soriano D and Cannavó E 2023 NPJ 2D Mater. Appl. 1 42 [19] Roychowdhury A, Dalui T K and Ghose P K 2022 J. Solid State Chem. 312 123106 [20] Klein D R, MacNeill D and Lado J L 2018 Science 360 1218 [21] Sun Y, Yan P and Ning J 2021 AIP Adv. 11 035138 [22] Zhang X, Lu Q, Liu W, et al. 2021 Nat. Commun. 12 2492 [23] Zhang H, Chen R, Zhai K, et al. 2020 Phys. Rev. B 102 064417 [24] Ren Q D, Lai K, Chen J H, Yu X X and Dai J Y 2023 Chin Phys. B 32 027201 [25] Lasek K, Coelho P M, Zberecki K, Xin Y, Kolekar S K, Li J F and Batzill M 2020 ACS Nano 14 8473 [26] Sun X, Li W, Wang X, et al. 2020 Nano Res. 13 3358 [27] Xian J J, Wang C, Nie J H and Li R 2022 Nat. Commun. 13 257 [28] Feng D, Shen Z, Xue Y and Guan Z 2023 Nanoscale 15 1561 [29] Han X, Guo Z, Chen L, Cao C, Sun F, Wang G and Yuan W X 2021 Mater. Chem. Front. 5 8275 [30] Hu L, Cao L, Li L, Duan J M, Liao X Q, Long F C, Zhou J, Xiao Y G, Zeng Y J and Zhou S Q 2021 Mater. Horiz. 8 1286 [31] Bogomolnyd E B and Rouben D C 1999 Europhys. J. B 9 695 [32] Huang C, Liu B, Jiang L, Pan Y F, Fan J Y, Shi D N, Ma C L, Luo Q and Zhu Y 2023 Phys. Rev. B 108 094433 [33] Dau M T, Vergnaud C, Marty A, Rortais F, Beigné C, Boukari H, Bellet-Amalric E, Guigoz V, Renault O, Alvarez C, Okuno H, Pochet P and Jamet M 2017 Appl. Phys. Lett. 110 011909 [34] Sivan U, Entin-Wohlman O and Imry Y 1988 Phys. Rev. Lett. 60 1566 [35] Honglei F, Yong L and Shi Y G 2022 Chin. Phys. Lett. 39 077501 [36] Zhang X Q, Ambhire S C, Lu Q S, et al. 2021 ACS Nano 15 15710 [37] Zhu H Y, Gao Y F, Hou Y S, Gui Z G and Huang L 2023 Phys. Rev. B 108 144404 [38] Dau, M T, Vergnaud C, Marty A, et al. 2017 Appl. Phys. Lett. 110 4973519 [39] Zhang X, Woods J M, Cha J J and Shi X Y 2020 Phys. Rev. B 102 115161 [40] Sultana R, Gurjar G, Neha P, et al. 2018 J. Supercond. Novel Magn. 31 2287 [41] Sharma D, Rani P, Maheshwari P K, Nagpal V, Meena R S, Islam S S, Patnaik S and Awana V P S 2020 AIP Conf. Proc. 2220 110028 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|