Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 077504    DOI: 10.1088/1674-1056/28/7/077504
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Field-variable magnetic domain characterization of individual 10 nm Fe3O4 nanoparticles

Zheng-Hua Li(李正华)1, Xiang Li(李翔)2, Wei Lu(陆伟)3
1 School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China;
2 School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
3 School of Materials Science and Engineering, Tongji University, Shanghai 200092, China
Abstract  

The local detection of magnetic domains of isolated 10 nm Fe3O4 magnetic nanoparticles (MNPs) has been achieved by field-variable magnetic force microscopy (MFM) with high spatial resolution. The domain configuration of an individual MNP shows a typical dipolar response. The magnetization reversal of MNP domains is governed by a coherent rotation mechanism, which is consistent with the theoretical results given by micromagnetic calculations. Present results suggest that the field-variable MFM has great potential in providing nanoscale magnetic information on magnetic nanostructures, such as nanoparticles, nanodots, skyrmions, and vortices, with high spatial resolution. This is crucial for the development and application of magnetic nanostructures and devices.

Keywords:  Fe3O4 nanoparticles      magnetic force microscopy      magnetic domain  
Received:  25 January 2019      Revised:  05 May 2019      Accepted manuscript online: 
PACS:  75.50.Ss (Magnetic recording materials)  
  75.78.Cd (Micromagnetic simulations ?)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61771092 and 51202146) and the Natural Science Foundation of Shanghai, China (Grant No. 17ZR1419700).

Corresponding Authors:  Xiang Li     E-mail:  xiangli@usst.edu.cn

Cite this article: 

Zheng-Hua Li(李正华), Xiang Li(李翔), Wei Lu(陆伟) Field-variable magnetic domain characterization of individual 10 nm Fe3O4 nanoparticles 2019 Chin. Phys. B 28 077504

[1] Sukhov A and Berakdar J 2009 Phys. Rev. Lett. 102 057204
[2] Balan A, Derlet P M, Rodrguez A F, Bansmann J, Yanes R, Nowak U, Kleibert A and Nolting F 2014 Phys. Rev. Lett. 112 107201
[3] Li X, Li Z, Pan D, Yoshimura S and Saito H 2014 Appl. Phys. Lett. 104 213106
[4] Li X, Lu W, Song Y, Wang Y, Chen A, Yan B, Yoshimura S and Saito H 2016 Sci. Rep. 6 22467
[5] Tudisco C, Bertani F, Cambria M T, Sinatra F, Fantechi E, Innocenti C, Sangregorio C, Dalcanale E and Condorelli G 2013 Nanoscale 5 11438
[6] Zhu J, Lu Y J, Li Y G, Jiang J, Cheng L, Liu Z, Guo L, Pan Y and Gu H W 2014 Nanoscale 6 199
[7] Brambilla D, Droumaguet B L, Nicolas J, Hashemi S H, Wu L P, Moghimi S M, Couvreur P and Andrieux K 2011 Nanomedicine 7 521
[8] Yang C L, Rait A, Pirollo K F, Dagata J A, Farkas N and Chang E H 2008 Nanomedicine 4 318
[9] López-Ortega A, Estrader M, Salazar-Alvarez G, Roca A G and Nogues J 2015 Phys. Rep. 553 1
[10] Sun S N, Wei C, Zhu Z Z, Hou Y L, Subbu S V and Xu Z C 2014 Chin. Phys. B. 23 037503
[11] Neumann A, Thonniben C, Frauen A, Hebe S, Meyer A and Oepen H P 2013 Nano Lett. 13 2199
[12] Thirion C, Wernsdorfer W and Mailly D 2003 Nat. Mater. 2 524
[13] Koelle D 2013 Nat. Nanotechnol.8 617
[14] Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M and Wiesendanger R 2002 Science 298 577
[15] Fischer P, Im M Y, Kasai S, Yamada K, Ono T and Thiaville A 2011 Phys. Rev. B 83 212402
[16] Rondin L, Tetienne J P, Rohart S, Thiaville A, Hingant T, Spinicelli P, Roach J F and Jacques V 2013 Nat. Commun. 4 2279
[17] Freeman M R and Choi B C 2001 Science 294 1484
[18] Li Z and Li X 2014 Acta Phys. Sin. 63 178503 (in Chinese)
[19] Hai G T, Zhao W X, Chen J S, Li Z H and He J L 2018 Chin. Phys. Lett. 35
[20] Block S, Glöckl G, Weitschies W and Helm C A 2011 Nano Lett. 11 3587
[21] Nocera T M, Chen J, Murray C B and Agarwal G 2012 Nanotechnology 23 495704
[22] Schreiber S, Savla M, Pelekhov D V, Iscru D F, Selcu C, Hammel P C and Agarwal G 2008 Small 4 270
[23] Sievers S, Braun K F, Eberbeck D, Gustafsson S, Olsson E, Schumacher H W and Siegner U 2012 Small 8 2675
[24] Kim D, Chung N K, Allen S, Tendler S J B and Park J W 2012 ACS Nano 6 241
[25] Moya C, Iglesias-Freire O, Pérez N, Batlle X, Labarta A and Asenjo A 2015 Nanoscale 7 8110
[26] Pinilla-Cienfuegos E, Manas-Valero S, Forment-Aliaga A and Coronado E 2016 ACS Nano 10 1764
[27] Sorop T G, Untiedt C, Luis F, Kroll M, Rasa M and Jongh L J 2003 Phys. Rev. B 67 014402
[28] Ross C A et al 2002 Phys. Rev. B 65 144417
[29] Ferre R and Ounadjela K 1997 Phys. Rev. B 56 14066
[30] Margaris G, Trohidou K N, Iannotti V, Ausanio G, Lanotte L and Fiorani D 2012 Phys. Rev. B 86 214425
[31] Lu W, Li Z, Hatakeyama K, Egawa G, Yoshimura S and Saito H 2010 Appl. Phys. Lett. 96 143104
[1] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[2] Asymmetric dynamic behaviors of magnetic domain wall in trapezoid-cross-section nanostrip
Xiao-Ping Ma(马晓萍), Hong-Guang Piao(朴红光), Lei Yang(杨磊), Dong-Hyun Kim, Chun-Yeol You, Liqing Pan(潘礼庆). Chin. Phys. B, 2020, 29(9): 097502.
[3] Spin switching in antiferromagnets using Néel-order spin-orbit torques
P Wadley, K W Edmonds. Chin. Phys. B, 2018, 27(10): 107201.
[4] Modeling of the loading path dependent magnetomechanical behavior of Galfenol alloy
Hui Jiang(江慧), Jie Zhu(朱洁). Chin. Phys. B, 2017, 26(3): 037503.
[5] Evolution of magnetic domain structure of martensite in Ni-Mn-Ga films under the interplay of the temperature and magnetic field
Xie Ren (谢忍), Wei Jun (韦俊), Liu Zhong-Wu (刘仲武), Tang Yan-Mei (唐妍梅), Tang Tao (唐涛), Tang Shao-Long (唐少龙), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(6): 068103.
[6] Composition influence on the microstructures and magnetic properties of FePt thin films
Liu Li-Wang (刘立旺), Dang Hong-Gang (党红刚), Sheng Wei (盛伟), Wang Ying (王颖), Cao Jiang-Wei (曹江伟), Bai Jian-Min (白建民), Wei FuLin (魏福林). Chin. Phys. B, 2013, 22(4): 047503.
[7] Synthesis and properties of Au-Fe3O4 and Ag-Fe3O4 heterodimeric nanoparticles
Ding Hao(丁皓), Shen Cheng-Min(申承民), Hui Chao(惠超), Xu Zhi-Chuan(徐梽川), Li Chen(李晨), Tian Yuan(田园), Shi Xue-Zhao(时雪钊), and Gao Hong-Jun (高鸿钧). Chin. Phys. B, 2010, 19(6): 066102.
[8] Magnetic domain structures of precipitation-hardened SmCo 2:17-type sintered magnets: Heat treatment effect
Li Xiu-Mei(李岫梅), Fang Yi-Kun(方以坤), Guo Zhao-Hui(郭朝晖), Liu Tao(刘涛), Guo Yong-Quan(郭永权), Li Wei(李卫), and Han Bao-Shan(韩宝善). Chin. Phys. B, 2008, 17(6): 2281-2287.
[9] Domain structures of Nd13Fe80B7 magnets during HDDR process
Zhang Zhen-Rong (张臻蓉), Pang Zhi-Yong (庞智勇), Zhao Yi-Min (赵义敏), Zhang Zheng-Yi (张正义), Han Sheng-Hao (韩圣浩), Han Bao-Shan (韩宝善). Chin. Phys. B, 2003, 12(11): 1305-1309.
[10] Investigation of the magnetic domain structure of (PtCoPt)/Si multilayers by magnetic force microscopy
Zhang Zhen-Rong (张臻蓉), Liu Hong (刘洪), Han Bao-Shan (韩宝善). Chin. Phys. B, 2002, 11(6): 629-634.
No Suggested Reading articles found!