CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Field-variable magnetic domain characterization of individual 10 nm Fe3O4 nanoparticles |
Zheng-Hua Li(李正华)1, Xiang Li(李翔)2, Wei Lu(陆伟)3 |
1 School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China;
2 School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
3 School of Materials Science and Engineering, Tongji University, Shanghai 200092, China |
|
|
Abstract The local detection of magnetic domains of isolated 10 nm Fe3O4 magnetic nanoparticles (MNPs) has been achieved by field-variable magnetic force microscopy (MFM) with high spatial resolution. The domain configuration of an individual MNP shows a typical dipolar response. The magnetization reversal of MNP domains is governed by a coherent rotation mechanism, which is consistent with the theoretical results given by micromagnetic calculations. Present results suggest that the field-variable MFM has great potential in providing nanoscale magnetic information on magnetic nanostructures, such as nanoparticles, nanodots, skyrmions, and vortices, with high spatial resolution. This is crucial for the development and application of magnetic nanostructures and devices.
|
Received: 25 January 2019
Revised: 05 May 2019
Accepted manuscript online:
|
PACS:
|
75.50.Ss
|
(Magnetic recording materials)
|
|
75.78.Cd
|
(Micromagnetic simulations ?)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61771092 and 51202146) and the Natural Science Foundation of Shanghai, China (Grant No. 17ZR1419700). |
Corresponding Authors:
Xiang Li
E-mail: xiangli@usst.edu.cn
|
Cite this article:
Zheng-Hua Li(李正华), Xiang Li(李翔), Wei Lu(陆伟) Field-variable magnetic domain characterization of individual 10 nm Fe3O4 nanoparticles 2019 Chin. Phys. B 28 077504
|
[1] |
Sukhov A and Berakdar J 2009 Phys. Rev. Lett. 102 057204
|
[2] |
Balan A, Derlet P M, Rodrguez A F, Bansmann J, Yanes R, Nowak U, Kleibert A and Nolting F 2014 Phys. Rev. Lett. 112 107201
|
[3] |
Li X, Li Z, Pan D, Yoshimura S and Saito H 2014 Appl. Phys. Lett. 104 213106
|
[4] |
Li X, Lu W, Song Y, Wang Y, Chen A, Yan B, Yoshimura S and Saito H 2016 Sci. Rep. 6 22467
|
[5] |
Tudisco C, Bertani F, Cambria M T, Sinatra F, Fantechi E, Innocenti C, Sangregorio C, Dalcanale E and Condorelli G 2013 Nanoscale 5 11438
|
[6] |
Zhu J, Lu Y J, Li Y G, Jiang J, Cheng L, Liu Z, Guo L, Pan Y and Gu H W 2014 Nanoscale 6 199
|
[7] |
Brambilla D, Droumaguet B L, Nicolas J, Hashemi S H, Wu L P, Moghimi S M, Couvreur P and Andrieux K 2011 Nanomedicine 7 521
|
[8] |
Yang C L, Rait A, Pirollo K F, Dagata J A, Farkas N and Chang E H 2008 Nanomedicine 4 318
|
[9] |
López-Ortega A, Estrader M, Salazar-Alvarez G, Roca A G and Nogues J 2015 Phys. Rep. 553 1
|
[10] |
Sun S N, Wei C, Zhu Z Z, Hou Y L, Subbu S V and Xu Z C 2014 Chin. Phys. B. 23 037503
|
[11] |
Neumann A, Thonniben C, Frauen A, Hebe S, Meyer A and Oepen H P 2013 Nano Lett. 13 2199
|
[12] |
Thirion C, Wernsdorfer W and Mailly D 2003 Nat. Mater. 2 524
|
[13] |
Koelle D 2013 Nat. Nanotechnol.8 617
|
[14] |
Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M and Wiesendanger R 2002 Science 298 577
|
[15] |
Fischer P, Im M Y, Kasai S, Yamada K, Ono T and Thiaville A 2011 Phys. Rev. B 83 212402
|
[16] |
Rondin L, Tetienne J P, Rohart S, Thiaville A, Hingant T, Spinicelli P, Roach J F and Jacques V 2013 Nat. Commun. 4 2279
|
[17] |
Freeman M R and Choi B C 2001 Science 294 1484
|
[18] |
Li Z and Li X 2014 Acta Phys. Sin. 63 178503 (in Chinese)
|
[19] |
Hai G T, Zhao W X, Chen J S, Li Z H and He J L 2018 Chin. Phys. Lett. 35
|
[20] |
Block S, Glöckl G, Weitschies W and Helm C A 2011 Nano Lett. 11 3587
|
[21] |
Nocera T M, Chen J, Murray C B and Agarwal G 2012 Nanotechnology 23 495704
|
[22] |
Schreiber S, Savla M, Pelekhov D V, Iscru D F, Selcu C, Hammel P C and Agarwal G 2008 Small 4 270
|
[23] |
Sievers S, Braun K F, Eberbeck D, Gustafsson S, Olsson E, Schumacher H W and Siegner U 2012 Small 8 2675
|
[24] |
Kim D, Chung N K, Allen S, Tendler S J B and Park J W 2012 ACS Nano 6 241
|
[25] |
Moya C, Iglesias-Freire O, Pérez N, Batlle X, Labarta A and Asenjo A 2015 Nanoscale 7 8110
|
[26] |
Pinilla-Cienfuegos E, Manas-Valero S, Forment-Aliaga A and Coronado E 2016 ACS Nano 10 1764
|
[27] |
Sorop T G, Untiedt C, Luis F, Kroll M, Rasa M and Jongh L J 2003 Phys. Rev. B 67 014402
|
[28] |
Ross C A et al 2002 Phys. Rev. B 65 144417
|
[29] |
Ferre R and Ounadjela K 1997 Phys. Rev. B 56 14066
|
[30] |
Margaris G, Trohidou K N, Iannotti V, Ausanio G, Lanotte L and Fiorani D 2012 Phys. Rev. B 86 214425
|
[31] |
Lu W, Li Z, Hatakeyama K, Egawa G, Yoshimura S and Saito H 2010 Appl. Phys. Lett. 96 143104
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|