Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 086601    DOI: 10.1088/1674-1056/ad5d9a
RAPID COMMUNICATION Prev   Next  

Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes

Aming Lin(林啊鸣)1,2, Jing Shi(石晶)3, Su-Huai Wei(魏苏淮)4,†, and Yi-Yang Sun(孙宜阳)1,2,‡
1 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Physics, Jiangxi Normal University, Nanchang 330022, China;
4 Eastern Institute of Technology, Ningbo 315200, China
Abstract  Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes. Computational methods, specifically nudged elastic band (NEB) and molecular dynamics (MD) methods, provide powerful tools for the design of solid-state electrolytes. The MD method is usually the choice for studying the materials involving complex multiple diffusion paths or having disordered structures. However, it relies on simulations at temperatures much higher than working temperature. This paper studies the reliability of the MD method using the system of Na diffusion in MgO as a benchmark. We carefully study the convergence behavior of the MD method and demonstrate that total effective simulation time of 12 ns can converge the calculated diffusion barrier to about 0.01 eV. The calculated diffusion barrier is 0.31 eV from both methods. The diffusion coefficients at room temperature are $4.3\times 10^{-9}$ cm$^2\cdot$s$^{-1}$ and $2.2\times 10^{-9}$ cm$^2\cdot$s$^{-1}$, respectively, from the NEB and MD methods. Our results justify the reliability of the MD method, even though high temperature simulations have to be employed to overcome the limitation on simulation time.
Keywords:  nudged elastic band method      molecular dynamics      solid electrolyte      ion transport      density functional theory  
Received:  20 June 2024      Revised:  20 June 2024      Accepted manuscript online:  02 July 2024
PACS:  66.30.J- (Diffusion of impurities ?)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12164019, 11991060, 12088101, and U1930402) and the Natural Science Foundation of Jiangxi Province of China (Grant No. 20212BAB201017).
Corresponding Authors:  Su-Huai Wei, Yi-Yang Sun     E-mail:  suhuaiwei@eitech.edu.cn;yysun@mail.sic.ac.cn

Cite this article: 

Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳) Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes 2024 Chin. Phys. B 33 086601

[1] Zhao Y, et al. 2023 Nat. Rev. Mater. 8 623
[2] Yang C, et al. 2021 Adv. Energy Mater. 11 2000974
[3] Tarascon J M and Armand M 2001 Nature 414 359
[4] Chao D, et al. 2020 Sci. Adv. 6 eaba4098
[5] Wu F, Maier J and Yu Y 2020 Chem. Soc. Rev. 49 1569
[6] Zhang Z, et al. 2018 Energy Environ. Sci. 11 1945
[7] Janek J and Zeier W G 2016 Nat. Energy 1 16141
[8] Zhu Z, et al. 2021 Adv. Energy Mater. 11 2003196
[9] Oh K and Kang K 2020 Angew. Chem. Int. Ed. 59 18457
[10] Zhang Z, et al. 2019 J. Am. Chem. Soc. 141 19360
[11] Gupta M K, et al. 2021 Energy Environ. Sci. 14 6554
[12] Poletayev A D, et al. 2022 Nat. Mater. 21 1066
[13] Zhang Z and Nazar L F 2022 Nat. Rev. Mater. 7 389
[14] He X, Zhu Y and Mo Y 2017 Nat. Commun. 8 15893
[15] Heo T W, et al. 2021 npj Comput. Mater. 7 214
[16] Baktash A, et al. 2020 npj Comput. Mater. 6 162
[17] Strauss F, et al. 2021 Sci. Rep. 11 14073
[18] Golov A and Carrasco J 2022 npj Comput. Mater. 8 187
[19] Wang Z and Shao G 2017 J. Mater. Chem. A 5 21846
[20] Winter G and Gómez-Bombarelli R 2023 J. Phys.: Energy 5 024004
[21] Mishin Y 2005 Diffusion Processes in Advanced Technological Materials, edited by Gupta D (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005), pp. 113
[22] Voter A F and Doll J D 1984 J. Chem. Phys. 80 5832
[23] Rong Z, et al. 2016 J. Chem. Phys. 145 074112
[24] Henkelman G and Jósson H 2000 J. Chem. Phys. 113 9978
[25] Yang J H, et al. 2015 Phys. Rev. B 91 075202
[26] Wang Y, et al. 2014 Chem. Mater. 26 5613
[27] Jalem R, et al. 2013 Chem. Mater. 25 425
[28] de Klerk N J J, van der Maas E and Wagemaker M 2018 ACS Appl. Energy Mater. 1 3230
[29] Wang Y, et al. 2015 Nat. Mater. 14 1026
[30] Varley J B, et al. 2016 ACS Energy Lett. 2 250
[31] Deng Z, et al. 2016 Chem. Mater. 29 281
[32] Chang D, et al. 2018 Chem. Mater. 30 8764
[33] He X, et al. 2018 npj Comput. Mater. 4 18
[34] Xu Z, et al. 2023 npj Comput. Mater. 9 105
[35] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[36] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Mehrer H 2007 Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes (Springer Science & Business Media, 2007), Vol. 155
[39] Wert C and Zener C 1949 Phys. Rev. 76 1169
[40] Vineyard G H 1957 J. Phys. Chem. Solids 3 121
[41] Nosé S 2006 Mol. Phys. 52 255
[42] Wu X, et al. 2022 Phys. Rev. B 105 195206
[43] Jinnouchi R, et al. 2019 Phys. Rev. Lett. 122 225701
[44] Jinnouchi R, et al. 2020 J. Chem. Phys. 152 234102
[45] Jinnouchi R, Karsai F and Kresse G 2019 Phys. Rev. B 100 014105
[46] Shi J, et al. 2023 J. Mater. Chem. A 11 14819
[47] Smith D K and Leider H R 1968 J. Appl. Crystallogr. 1 246
[1] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[2] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[3] Structure and dynamical properties during solidification of liquid aluminum induced by cooling and compression
Min Wu(吴旻), Yong-Qi Yang(杨永琪), and Yao Wang(王垚). Chin. Phys. B, 2024, 33(7): 076301.
[4] Subpicosecond laser ablation behavior of a magnesium target and crater evolution: Molecular dynamics study and experimental validation
Guolong Jiang(江国龙) and Xia Zhou(周霞). Chin. Phys. B, 2024, 33(7): 077901.
[5] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), and Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[6] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
[7] Rational molecular engineering towards efficient heterojunction solar cells based on organic molecular acceptors
Kaiyan Zhang(张凯彦), Peng Song(宋朋), Fengcai Ma(马凤才), and Yuanzuo Li(李源作). Chin. Phys. B, 2024, 33(6): 068402.
[8] Cholesterol-induced deformation of the gramicidin A channel inhibiting potassium ion binding and transport
Pan Xiao(肖盼), Yu Cao(曹宇), Jin Zhu(朱瑾), and Qing Liang(梁清). Chin. Phys. B, 2024, 33(5): 058701.
[9] Controlled thermally-driven mass transport in carbon nanotubes using carbon hoops
Yaolong Li(李耀隆), Songyuan Li(李松远), Meifen Wang(王美芬), and Renliang Zhang(张任良). Chin. Phys. B, 2024, 33(4): 046101.
[10] Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[11] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[12] Thermal transport in composition graded silicene/germanene heterostructures
Zengqiang Cao(曹增强), Chaoyu Wang(王超宇), Honggang Zhang(张宏岗), Bo You(游波), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2024, 33(4): 044402.
[13] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[14] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[15] Plasmon-induced nonlinear response on gold nanoclusters
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(4): 044204.
[1] Tuo Li(李拓), Ke Cheng(程可), Zheng Peng(彭政), Hui Yang(杨晖), and Meiying Hou(厚美瑛). Intruder trajectory tracking in a three-dimensional vibration-driven granular system: Unveiling the mechanism of the Brazil nut effect[J]. Chin. Phys. B, 2023, 32(10): 104501 .
[2] Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Field induced Chern insulating states in twisted monolayer-bilayer graphene[J]. Chin. Phys. B, 2024, 33(6): 67301 -067301 .
[3] Fuyu Tian(田伏钰), Muhammad Faizan, Xin He(贺欣), Yuanhui Sun(孙远慧), and Lijun Zhang(张立军). Moiré superlattices arising from growth induced by screw dislocations in layered materials[J]. Chin. Phys. B, 2024, 33(7): 77403 -077403 .
[4] Wen-Chuang Shang(商文创), Yi-Ning Han(韩熠宁), Shimpei Endo, and Chao Gao(高超). Topological phases and edge modes of an uneven ladder[J]. Chin. Phys. B, 2024, 33(8): 80202 -080202 .
[5] Ao Wang(汪澳), Yu-Zhen Wei(魏玉震), Min Jiang(姜敏), Yong-Cheng Li(李泳成), Hong Chen(陈虹), and Xu Huang(黄旭). Effects of quantum noise on teleportation of arbitrary two-qubit state via five-particle Brown state[J]. Chin. Phys. B, 2024, 33(8): 80307 -080307 .
[6] Pu Wang(王璞), Zhong-Yan Li(李忠艳), and Hui-Xian Meng(孟会贤). Quantum block coherence with respect to projective measurements[J]. Chin. Phys. B, 2024, 33(8): 80308 -080308 .
[7] Yikang Chen(陈奕康) and Zong-Hong Zhu(朱宗宏). Detecting short-term gravitational waves from post-merger hyper-massive neutron stars with a kilohertz detector[J]. Chin. Phys. B, 2024, 33(8): 80401 -080401 .
[8] Jia-Yi Zhu(朱佳仪), Zhi-Min He(何志民), Cheng Huang(黄成), Jun Zeng(曾峻), Hui-Chuan Lin(林惠川), Fu-Chang Chen(陈福昌), Chao-Qun Yu(余超群), Yan Li(李燕), Yong-Tao Zhang(张永涛), Huan-Ting Chen(陈焕庭), and Ji-Xiong Pu(蒲继雄). Deep learning-assisted common temperature measurement based on visible light imaging[J]. Chin. Phys. B, 2024, 33(8): 80701 -080701 .
[9] C. S. Gomes, F. E. Jorge, and A. Canal Neto. All-electron basis sets for H to Xe specific for ZORA calculations: Applications in atoms and molecules[J]. Chin. Phys. B, 2024, 33(8): 83101 -083101 .
[10] Jialing Yang(杨嘉玲), Aoqian Shi(史奥芊), Yuchen Peng(彭宇宸), Peng Peng(彭鹏), and Jianjun Liu(刘建军). Interface state-based bound states in continuum and below-continuum-resonance modes with high-Q factors in the rotational periodic system[J]. Chin. Phys. B, 2024, 33(8): 84206 -084206 .