Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 040602    DOI: 10.1088/1674-1056/ac8344
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Measurements of Majorana transition frequency shift in caesium atomic fountain clocks

Jun-Ru Shi(施俊如)1,2,3, Xin-Liang Wang(王心亮)1,2,†, Fan Yang(杨帆)1,2,3, Yang Bai(白杨)1,2,3, Yong Guan(管勇)1,2, Si-Chen Fan(范思晨)1,2,3, Dan-Dan Liu(刘丹丹)1,2, Jun Ruan(阮军)1,2, and Shou-Gang Zhang(张首刚)1,2
1 National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China;
2 Key Laboratory of Time and Frequency Primary Standards, Chinese Academy of Sciences, Xi'an 710600, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The caesium atomic fountain clock is a primary frequency standard. During its operation, a Majorana transition frequency shift will occur once a magnetic field at some special locations along the atomic trajectory is singular. In this study, by developing a physical model, we analyzed the magnetic field requirements for atomic adiabatic transition and calculated the influence of the Majorana atomic transition on the atomic state via a quantum method. Based on the simulation results for the magnetic field in the fountain clock, we applied the Monte Carlo method to simulate the relationship between the Majorana transition frequency shift and the magnetic field at the entrance of the magnetic shielding, as well as the initial atomic population. Measurement of the Majorana transition frequency shift was realized by state-selecting asymmetrically populated atoms. The relationship between the Majorana transition frequency shift and the axial magnetic field at the entrance of the magnetic shielding was obtained. The measured results were essentially consistent with the calculated results. Thus, the magnetic field at the entrance of the magnetic shielding was configured, and the Majorana transition frequency shift of the fountain clock was calculated to be 4.57×10-18.
Keywords:  caesium atomic fountain clock      Majorana transition frequency shift      magnetic field      initial atomic population  
Received:  28 March 2022      Revised:  18 July 2022      Accepted manuscript online:  22 July 2022
PACS:  06.30.Ft (Time and frequency)  
  07.77.Gx (Atomic and molecular beam sources and detectors)  
  32.10.-f (Properties of atoms)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12173044), Research and Development Project of Scientific Research Instruments and Equipment of Chinese Academy of Sciences (Grant No. YJKYYQ20200020), Large Research Infrastructures Improvement Funds of Chinese Academy of Sciences (Grant No. DSS-WXGZ-2020-0005), and Chinese Academy of Sciences for Western Young Scholars (Grant Nos. XAB2018A06, XAB2019A07, and XAB2018B16).
Corresponding Authors:  Xin-Liang Wang     E-mail:  wangxl@ntsc.ac.cn

Cite this article: 

Jun-Ru Shi(施俊如), Xin-Liang Wang(王心亮), Fan Yang(杨帆), Yang Bai(白杨), Yong Guan(管勇), Si-Chen Fan(范思晨), Dan-Dan Liu(刘丹丹), Jun Ruan(阮军), and Shou-Gang Zhang(张首刚) Measurements of Majorana transition frequency shift in caesium atomic fountain clocks 2023 Chin. Phys. B 32 040602

[1] Majorana E 1932 Il Nuovo Cimento 9 335
[2] Urabe S, Nakagiri K, Ohta Y, Kobayashi M and Saburi Y 1980 IEEE Trans. Instrum. Meas. 29 304
[3] Becker G 1978 IEEE Trans. Instrum. Meas. 27 319
[4] Wang Y Q 1981 Acta Metrologica Sin. 2 42
[5] Du Y B, Wei R, Dong R C and Wang Y Z 2013 245 419
[6] Dai S Y, Zheng F S, Liu K, Chen W L, Lin Y G, Li T C and Fang F 2021 Chin. Phys. B 30 013701
[7] Weyers S, Gerginov V, Kazda M, Rahm J, Lipphardt B, Dobrev G and Gibble K 2018 Metrologia 55 789
[8] BIPM https://webtai.bipm.org/ftp/pub/tai/data/PSFS_reports/nrc-fcs2_59609-59634.pdf
[9] Wynands R, Schröder R and Weyers S 2006 European Frequency and Time Forum, 2006, Braunschweig, pp. 219-223
[10] Wynands R, Schröder R and Weyers S 2007 IEEE Trans. Instrum. Meas. 56 660
[11] Shi J R, Wang X L, Guan Y, Ruan J, Liu D D, Bai Y, Yang F, Zhang H, Yu F X and Zhang S G 2019 Acta Phys. Sin. 68 190601 (in Chinese)
[12] Shi J R, Wang X L, Bai Y, Yang F, Guan Y, Liu D D, Ruan J and Zhang S G 2021 Chin. Phys. B 30 070601
[13] Gerginov V, Nemitz N, Weyers S, Schröder R, Griebsch D and Wynands R 2010 Metrologia 47 65
[14] Weyers S, Hübner U, Schröder R, Tamm C and Bauch A 2001 Metrologia 38 343
[15] Tsang T 1997 Classical Electrodynamics (Washington D.C.: World Scientific Publishing) p. 411
[16] Cutler L S, Flory C A, Giffard R P and De Marchi A 1991 J. Appl. Phys. 69 2780
[17] Bauch A and Schröder R 1993 Ann. Physik 505 421
[18] Gerginov V, Nemitz N and Weyers S 2014 Phys. Rev. A 90 033829
[19] Vanier J and Audoin C 1989 The Quantum Physics of Atomic Frequency Standards (Bristol: IOP Publishing)
[20] Ramsey N F 1956 Molecular Beams (London: Oxford University Press)
[21] Shirley J H and Jefferts S R 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, May 4-8,2003, Florida, USA, p. 1072
[22] Li R and Gibble K 2004 Metrologia 41 376
[23] Shi J R 2016 The study of Ramsey and Rabi frequency pulling shift in Cesium fountain clock (Master Dissertation) (Beijing: University of Chinese Academy of Sciences) (in Chinese)
[24] Lee H S, Kwon T Y, Kang H S, Park Y H, Oh C H, Park S E, Cho H and Minogin V G 2003 Metrologia 40 224
[25] Wynands R and Weyers S 2005 Metrologia 42 S64
[26] Li L, Ji J, Ren W, Zhao X, Peng X, Xiang J, Lü D and Liu L 2016 Chin. Phys. B 25 073201
[1] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[4] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[5] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[6] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[7] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[8] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[9] Evaluation of second-order Zeeman frequency shift in NTSC-F2
Jun-Ru Shi(施俊如), Xin-Liang Wang(王心亮), Yang Bai(白杨), Fan Yang(杨帆), Yong Guan(管勇), Dan-Dan Liu(刘丹丹), Jun Ruan(阮军), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2021, 30(7): 070601.
[10] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[11] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[12] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[13] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[14] Exploration of magnetic field generation of H32+ by direc ionization and coherent resonant excitation
Zhi-Jie Yang(杨志杰), Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(12): 123203.
[15] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
No Suggested Reading articles found!