Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 058704    DOI: 10.1088/1674-1056/ad1a8e
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Synchronization and firing mode transition of two neurons in a bilateral auditory system driven by a high-low frequency signal

Charles Omotomide Apata, Yi-Rui Tang(唐浥瑞), Yi-Fan Zhou(周祎凡), Long Jiang(蒋龙)†, and Qi-Ming Pei(裴启明)‡
School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
Abstract  The FitzHugh-Nagumo neuron circuit integrates a piezoelectric ceramic to form a piezoelectric sensing neuron, which can capture external sound signals and simulate the auditory neuron system. Two piezoelectric sensing neurons are coupled by a parallel circuit consisting of a Josephson junction and a linear resistor, and a binaural auditory system is established. Considering the non-singleness of external sound sources, the high-low frequency signal is used as the input signal to study the firing mode transition and synchronization of this system. It is found that the angular frequency of the high-low frequency signal is a key factor in determining whether the dynamic behaviors of two coupled neurons are synchronous. When they are in synchronization at a specific angular frequency, the changes in physical parameters of the input signal and the coupling strength between them will not destroy their synchronization. In addition, the firing mode of two coupled auditory neurons in synchronization is affected by the characteristic parameters of the high-low frequency signal rather than the coupling strength. The asynchronous dynamic behavior and variations in firing modes will harm the auditory system. These findings could help determine the causes of hearing loss and devise functional assistive devices for patients.
Keywords:  piezoelectric ceramic      Josephson junction      auditory neuron      synchronization  
Received:  21 October 2023      Revised:  14 December 2023      Accepted manuscript online:  04 January 2024
PACS:  87.19.lm (Synchronization in the nervous system)  
  87.15.A- (Theory, modeling, and computer simulation)  
  87.19.ll (Models of single neurons and networks)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11605014).
Corresponding Authors:  Long Jiang, Qi-Ming Pei     E-mail:  jianglong@yangtzeu.edu.cn;qmpei@yangtzeu.edu.cn

Cite this article: 

Charles Omotomide Apata, Yi-Rui Tang(唐浥瑞), Yi-Fan Zhou(周祎凡), Long Jiang(蒋龙), and Qi-Ming Pei(裴启明) Synchronization and firing mode transition of two neurons in a bilateral auditory system driven by a high-low frequency signal 2024 Chin. Phys. B 33 058704

[1] Rubel E W and Fritzsch B 2002 Annu. Rev. Neurosci. 25 51
[2] Zhou P, Yao Z, Ma J and Zhu Z G 2021 Chaos Soliton. Fract. 145 110751
[3] Guo Y, Zhou P, Yao Z and Ma J 2021 Nonlinear Dyn. 105 3603
[4] Ma J 2022 Journal of Guangxi Normal University (Natural Science Edition) 40 307
[5] Lu L L, Jia Y, Xu Y, Ge M Y, Yang L J and Zhan X 2019 Sci. China Technol. Sci. 62 427
[6] Lu L L, Jia Y, Liu W H and Yang L J 2017 Complexity 2017 7628537
[7] Wang G W, Xu Y, Ge M Y, Jia Y and Lu L L 2020 Int. J. Electron. Commun. (AEU) 120 153209
[8] Wang Y, Wang C N, Ren G D, Jin W Y and Tang J 2017 Nonlinear Dyn. 89 1967
[9] Wang G W, Yu D, Ding Q M, Li T Y and Jia Y 2021 Chaos Soliton. Fract. 150 111210
[10] Chua L 2014 Semicond. Sci. Tech. 29 104001
[11] Hong Q H, Zhao L and Wang X P 2019 Neurocomputing 330 11
[12] Juzekaeva E, Nasretdinov A, Battistoni S, Berzina T, Iannotta S, Khazipov R, Erokhin V and Mukhtarov M 2019 Adv. Mater. Technol. 4 1800350
[13] Yang Z Q, Zhang Y and Wu F Q 2020 Nonlinear Dyn. 100 647
[14] Wu F Q, Zhang Y and Zhang X J 2019 Nonlinear Dyn. 98 971
[15] Jin W Y, Wang A, Ma J and Lin Q 2019 Sci. China Technol. Sc. 62 2113
[16] Shan Y, Yang H, Wang H, Zhang S, Li Y and Xu G 2022 Chin. Phys. B 31 080507
[17] Lukić J and Denić D 2015 Metrol. Meas. Syst. 22 351
[18] Xu Y, Liu M, Zhu Z and Ma J 2020 Chin. Phys. B 29 098704
[19] Li Z, Xie W, Zeng J and Zeng Y 2023 Chin. Phys. B 32 010503
[20] Guo Z, Li Z, Wang M and Ma M 2023 Chin. Phys. B 32 038701
[21] Zhang X F, Wang C N, Ma J and Ren G D 2020 Mod. Phys. Lett. B 34 050267
[22] Xu Y, Guo Y Y, Ren G D and Ma J 2020 Appl. Math. Comput. 385 125427
[23] Qi G and Wang Z 2021 Chin. Phys. B 30 120516
[24] Nakayama T 1985 Jpn. J. Physiol. 35 375
[25] Liu Y, Xu W J, Ma J, Alzahrani F and Hobiny A 2020 Front. Inform. Technol. Electron. Eng. 21 1387
[26] Liu Y, Xu Y and Ma J 2020 Commun. Nonlinear Sci. Numer. Simul. 89 105297
[27] Guo Y Y, Zhu Z G, Wang C N and Ren G D 2020 Optik 218 164993
[28] Xie Y, Yao Z, Hu X and Ma J 2021 Chin. Phys. B 30 120510
[29] Pountougnigni O V, Yamapi R, Filatrella G and Tchawoua C 2019 Phys. Rev. E 99 032220
[30] Koudafoke G N, Hinvi L A, Miwadinou C H, Monwanou A V and Orou J C 2021 Sens. Actuat. A: Phys. 318 112509
[31] Zhang Y, Zhou P, Tang J and Ma J 2021 Chin. J. Phys. 71 72
[32] Zhang Y, Xu Y, Yao Z and Ma J 2020 Nonlinear Dyn. 102 1849
[33] Zhang Y, Wang C N, Tang J, Ma J and Ren G D 2020 Sci. China Technol. Sc. 63 2328
[34] Schneider M L, Donnelly C A and Russek S E 2018 J. Appl. Phys. 124 161102
[35] Attwell D and Laughlin S B 2001 J. Cerebr. Blood F. Met. 21 1133
[36] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500
[37] FitzHugh R 1961 Biophys. J. 1 445
[38] Nagumo J, Arimoto S and Yoshizawa S 1962 Proceedings of the IRE 50 2061
[39] FitzHugh R 1968 J. Appl. Physiol. 25 628
[40] Ge M Y, Jia Y, Xu Y and Yang L J 2018 Nonlinear Dyn. 91 515
[41] Wang Y, Sun G and Ren G 2023 Chin. Phys. B 32 040504
[1] Dynamics and synchronization of neural models with memristive membranes under energy coupling
Jingyue Wan(万婧玥), Fuqiang Wu(吴富强), Jun Ma(马军), and Wenshuai Wang(汪文帅). Chin. Phys. B, 2024, 33(5): 050504.
[2] Chimera states of phase oscillator populations with nonlocal higher-order couplings
Yonggang Wu(伍勇刚), Huajian Yu(余华健), Zhigang Zheng(郑志刚), and Can Xu(徐灿). Chin. Phys. B, 2024, 33(4): 040504.
[3] Dynamical behaviors in discrete memristor-coupled small-world neuronal networks
Jieyu Lu(鲁婕妤), Xiaohua Xie(谢小华), Yaping Lu(卢亚平), Yalian Wu(吴亚联), Chunlai Li(李春来), and Minglin Ma(马铭磷). Chin. Phys. B, 2024, 33(4): 048701.
[4] Co-doped BaFe2As2 Josephson junction fabricated with a focused helium ion beam
Ziwen Chen(陈紫雯), Yan Zhang(张焱), Ping Ma(马平), Zhongtang Xu(徐中堂), Yulong Li(李宇龙), Yue Wang(王越), Jianming Lu(路建明), Yanwei Ma(马衍伟), and Zizhao Gan(甘子钊). Chin. Phys. B, 2024, 33(4): 047405.
[5] Dynamical behavior of memristor-coupled heterogeneous discrete neural networks with synaptic crosstalk
Minglin Ma(马铭磷), Kangling Xiong(熊康灵), Zhijun Li(李志军), and Shaobo He(贺少波). Chin. Phys. B, 2024, 33(2): 028706.
[6] Dynamics and synchronization in a memristor-coupled discrete heterogeneous neuron network considering noise
Xun Yan(晏询), Zhijun Li(李志军), and Chunlai Li(李春来). Chin. Phys. B, 2024, 33(2): 028705.
[7] Quantum synchronization with correlated baths
Lei Li(李磊), Chun-Hui Wang(王春辉), Hong-Hao Yin(尹洪浩), Ru-Quan Wang(王如泉), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2024, 33(2): 020306.
[8] Light-modulated graphene-based φ0 Josephson junction and -φ0 to φ0 transition
Renxiang Cheng(程任翔), Miao Yu(于苗), Hong Wang(汪洪), Deliang Cao(曹德亮), Xingao Li(李兴鳌), Fenghua Qi(戚凤华), and Xingfei Zhou(周兴飞). Chin. Phys. B, 2024, 33(2): 027302.
[9] A step to the decentralized real-time timekeeping network
Fangmin Wang(王芳敏), Yufeng Chen(陈雨锋), Jianhua Zhou(周建华), Yuting Lin(蔺玉亭), Jun Yang(杨军), Bo Wang(王波), and Lijun Wang(王力军). Chin. Phys. B, 2024, 33(1): 010702.
[10] Paradoxical roles of inhibitory autapse and excitatory synapse in formation of counterintuitive anticipated synchronization
Xue-Li Ding(丁学利), Hua-Guang Gu(古华光), Yu-Ye Li(李玉叶), and Yan-Bing Jia(贾雁兵). Chin. Phys. B, 2023, 32(8): 088701.
[11] A novel fractional-order hyperchaotic complex system and its synchronization
Mengxin Jin(金孟鑫), Kehui Sun(孙克辉), and Shaobo He(贺少波). Chin. Phys. B, 2023, 32(6): 060501.
[12] Synchronization of stochastic complex networks with time-delayed coupling
Duolan(朵兰), Linying Xiang(项林英), and Guanrong Chen(陈关荣). Chin. Phys. B, 2023, 32(6): 060502.
[13] Stability and multistability of synchronization in networks of coupled phase oscillators
Yun Zhai(翟云), Xuan Wang(王璇), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2023, 32(6): 060503.
[14] Synchronization-desynchronization transitions in networks of circle maps with sinusoidal coupling
Yun Zhai(翟云), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2023, 32(6): 060505.
[15] Synchronization coexistence in a Rulkov neural network based on locally active discrete memristor
Ming-Lin Ma(马铭磷), Xiao-Hua Xie(谢小华), Yang Yang(杨阳), Zhi-Jun Li(李志军), and Yi-Chuang Sun(孙义闯). Chin. Phys. B, 2023, 32(5): 058701.
No Suggested Reading articles found!