Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 088701    DOI: 10.1088/1674-1056/acc450
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Paradoxical roles of inhibitory autapse and excitatory synapse in formation of counterintuitive anticipated synchronization

Xue-Li Ding(丁学利)1, Hua-Guang Gu(古华光)2,†, Yu-Ye Li(李玉叶)3, and Yan-Bing Jia(贾雁兵)4
1. Department of Public Basic Education, Fuyang Institute of Technology, Fuyang 236031, China;
2. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China;
3. College of Mathematics and Computer Science, Chifeng University, Chifeng 024000, China;
4. School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471000, China
Abstract  Different from the common delayed synchronization (DS) in which response appears after stimulation, anticipated synchronization (AS) in unidirectionally coupled neurons denotes a counterintuitive phenomenon in which response of the receiver neuron appears before stimulation of the sender neuron, showing an interesting function of brain to anticipate the future. The dynamical mechanism for the AS remains unclear due to complex dynamics of inhibitory and excitatory modulations. In this article, the paradoxical roles of excitatory synapse and inhibitory autapse in the formation of AS are acquired. Firstly, in addition to the common roles such that inhibitory modulation delays and excitatory modulation advances spike, paradoxical roles of excitatory stimulation to delay spike via type-Ⅱ phase response and of inhibitory autapse to advance spike are obtained in suitable parameter regions, extending the dynamics and functions of the excitatory and inhibitory modulations. Secondly, AS is related to the paradoxical roles of the excitatory and inhibitory modulations, presenting deep understandings to the AS. Inhibitory autapse induces spike of the receiver neuron advanced to appear before that of the sender neuron at first, and then excitatory synapse plays a delay role to prevent the spike further advanced, resulting in the AS as the advance and delay effects realize a dynamic balance. Lastly, inhibitory autapse with strong advance, middle advance, and weak advance and delay effects induce phase drift (spike of the receiver neuron advances continuously), AS, and DS, respectively, presenting comprehensive relationships between AS and other behaviors. The results present potential measures to modulate AS related to brain function.
Keywords:  anticipated synchronization      inhibitory autapse      excitatory synapse      paradoxical firing  
Received:  08 January 2023      Revised:  07 March 2023      Accepted manuscript online:  15 March 2023
PACS:  87.18.Sn (Neural networks and synaptic communication)  
  87.19.lm (Synchronization in the nervous system)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.12072236, 12162002, and 11802086), the Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (Grant No.NJYT-20-A09), and the Program for Excellent Young Talents in Colleges and Universities of Anhui Province of China (Grant No.gxyqZD2020077).
Corresponding Authors:  Hua-Guang Gu     E-mail:  guhuaguang@tongji.edu.cn

Cite this article: 

Xue-Li Ding(丁学利), Hua-Guang Gu(古华光), Yu-Ye Li(李玉叶), and Yan-Bing Jia(贾雁兵) Paradoxical roles of inhibitory autapse and excitatory synapse in formation of counterintuitive anticipated synchronization 2023 Chin. Phys. B 32 088701

[1] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C 2008 Phys. Rep. 469 93
[2] Jiang M, Zhu J, Liu Y, Yang M, Tian C, Jiang S, Wang Y, Guo H, Wang K and Shu Y 2012 PLoS Biol. 10 e1001324
[3] Voss H U 2000 Phys. Rev. E 61 5115
[4] Voss H U 2001 Phys. Rev. Lett. 87 014102
[5] Voss H U 2016 Phys. Rev. E 93 030201
[6] Wang H J, Huang H B and Qi G X 2005 Phys. Rev. E 71 015202
[7] Li F, Hu A H and Xu Z Y 2006 Chin. Phys. 15 507
[8] Ciszak M, Mirasso C R, Toral R and Calvo O 2009 Phys. Rev. E 79 046203
[9] Mayol C, Mirasso C R and Toral R 2012 Phys. Rev. E 85 056216
[10] Hayashi Y, Nasuto S J and Eberle H 2016 Phys. Rev. E 93 052229
[11] Ciszak M, Calvo O, Masoller C, Mirasso C R and Toral R 2003 Phys. Rev. Lett. 90 204102
[12] Pyragienė T and Pyragas K 2013 Nonlinear Dyn. 74 297
[13] Sausedo-Solorio J M and Pisarchik A N 2014 Phys. Lett. A 378 2108
[14] Washburn A, Kallen RW, Lamb M, Stepp N, Shockley K and Richardson M J 2019 PLoS ONE 14 e0221275
[15] Roman IR, Washburn A, Large EW, Chafe C and Fujioka T 2019 PLoS Comput. Biol. 15 e1007371
[16] Matias F S, Carelli P V, Mirasso C R and Copelli M 2011 Phys. Rev. E 84 021922
[17] Matias F S, Gollo L L, Carelli P V, Bressler S L, Copelli M and Mirasso C R 2014 NeuroImage 99 411
[18] Pinto M A, Rosso O A and Matias F S 2019 Phys. Rev. E 99 062411
[19] Matias F S, Gollo L L, Carelli P V, Mirasso C R and Copelli M 2016 Phys. Rev. E 94 042411
[20] Matias F S, Carelli P V, Mirasso C R, Mirasso C R and Copelli M 2017 Phys. Rev. E 95 052410
[21] Dima G C, Copelli M and Mindlin G B 2018 Int. J. Bifurcat. Chaos 28 1830025
[22] Dalla P L, Matias F S, Santos A J, Alonso A, Carelli P V, Copelli M and Mirasso C R 2019 Front. Syst. Neurosci. 13 41
[23] Brito K V P and Matias F S 2021 Phys. Rev. E 103 032415
[24] Machado J N and Matias F S 2020 Phys. Rev. E 102 032412
[25] Salazar R F, Dotson N M, Bressler S L and Gray C M 2012 Science 338 1097
[26] Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R and Bressler SL 2004 Proc. Natl. Acad. Sci. USA 101 9849
[27] Mindlin G B 2017 Chaos 27 092101
[28] Tass P, Kurths J, Rosenblum M G, Guasti G and Hefter H 1996 Phys. Rev. E 54 R2224
[29] Carlos F-L P, Ubirakitan M-M, Rodrigues M C A, Aguilar-Domingo M, Herrera-Gutiérrez E, Gómez-Amor J, Copelli M, Carelli P V and Matias F S 2020 Phys. Rev. E 102 032216
[30] Dodla R and Rinzel J 2006 Phys. Rev. E 73 010903
[31] Dodla R, Svirskis G and Rinzel J 2006 J. Neurophysiol. 95 2664
[32] Winograd M, Destexhe A and Sanchez-vives M V 2008 Proc. Natl. Acad. Sci. USA 105 7298
[33] Li Y Y, Gu H G, Jia B and Ding X L 2021 Sci. China Technol. Sci. 64 1459
[34] Wang X, Gu H and Jia Y 2023 Chaos Soliton Fract. 166 112904
[35] Wu F Q and Gu H G 2020 Int. J. Bifurcat. Chaos 30 2030009
[36] Zhao Z G, Li L and Gu H G 2020 Commun. Nonlinear Sci. Numer. Simulat. 85 105250
[37] Wang J, Xu J, Wu J and Xu Q 2022 Cogn. Neurodyn. 16 1505
[38] Li L, Zhao Z and Gu H 2022 Chin. Phys. B 31 070506
[39] Qi C S, Li Y Y, Gu H G and Yang Y X 2022 Cogn. Neurodyn. (online)
[40] Yang Y, Cui Y, Sang K, Dong Y Y, Ni Z Y, Ma S S and Hu H L 2018 Nature 554 317
[41] Kim J, Kim Y, Nakajima R, Shin A, Jeong M, Park A H, Jeong Y, Jo S, Yang S, Park H, Cho S H, Cho K H, Shim I, Chung J H, Paik S B, Augustine G and Kim D 2017 Neuron 95 1181
[42] Wang H T, Wang L F, Chen Y L and Chen Y 2014 Chaos 24 033122
[43] Ding X L, Jia B and Li Y Y 2019 Acta Phys. Sin. 68 080502 (in chinese)
[44] Wang H T and Chen Y 2015 Chin. Phys. B 24 128709
[45] Yin L, Zheng R, Ke W, He Q,Zhang Y, Li J, Wang B, Mi Z, Long Y S, Rasch M J, Li T, Luan G and Shu Y 2018 Nat. Commun. 9 4890
[46] He Z W, Yao C G, Shuai J W and Nakano T 2020 Chin. Phys. B 29 128702
[47] Yilmaz E, Ozer M, Baysal V and Perc M 2016 Sci. Rep. 6 30914
[48] Ma J, Song X, Jin W and Wang C 2015 Chaos Soliton Fract. 80 31
[49] Yao C G, He Z W, Nakano T, Qian Y and Shuai J W 2019 Nonlinear Dyn. 97 1425
[50] Sun X J and Si H 2020 Nonlinear Dyn. 100 2673
[51] Yilmaz E, Baysal V, Perc M and Ozer M 2016 Sci. China Technol. Sci. 59 364
[52] Jia Y B, Gu H G, Li Y Y and Ding X L 2021 Commun. Nonlinear Sci. Numer. Simulat. 95 105643
[53] Jia Y B, Gu H G and Li Y Y 2022 Cogn. Neurodynamics (online)
[54] Bacci A, Huguenard J R and Prince D A 2003 J. Neurosci. 23 859
[55] Tikidji-Hamburyan R A, Martinez J J, White J A and Canavier C C 2015 J. Neurosci. 35 15682
[56] Xu Y and Ma J 2021 Chin. Phys. B 30 100501
[57] Saada R, Miller N, Hurwitz I and Susswein A J 2009 Curr. Biol. 19 479
[58] Guo D Q, Chen M M, Perc M, Wu S D, Xia C, Zhang Y S, Xu P, Xia Y and Yao D Z 2016 Europhys. Lett. 114 30001
[59] Izhikevich E M 2003 IEEE Trans. Neural Netw. 14 1569
[60] Belykh I and Shilnikov A 2008 Phys. Rev. Lett. 101 078102
[61] Wu F, Gu H and Jia Y 2021 Chaos Soliton Fract. 153 111611
[1] Negative self-feedback induced enhancement and transition of spiking activity for class-3 excitability
Li Li(黎丽), Zhiguo Zhao(赵志国), and Huaguang Gu(古华光). Chin. Phys. B, 2022, 31(7): 070506.
[2] Robust synchronization of uncertain chaotic systems
Li Fang (李芳), Hu Ai-Hua (胡爱花), Xu Zhen-Yuan (徐振源). Chin. Phys. B, 2006, 15(3): 507-512.
No Suggested Reading articles found!