Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 058705    DOI: 10.1088/1674-1056/ad225e
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of individual heterogeneity on social contagions

Fu-Zhong Nian(年福忠)† and Yu Yang(杨宇)
School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730000, China
Abstract  Despite having significant effects on social contagions, individual heterogeneity has frequently been overlooked in earlier studies. To better understand the complexity of social contagions, a non-Markovian model incorporating heterogeneous social influence and adoption thresholds is introduced. For theoretical analysis, a generalized edge-based compartmental theory which considers the heterogeneities of social influence and adoption thresholds is developed. Focusing on the final adoption size, the critical propagation probability, and the phase transition type, social contagions for adoption thresholds that follow normal distributions with various standard deviations, follow various distributions, and correlate with degrees are investigated. When thresholds follow normal distributions, a larger standard deviation results in a larger final adoption size when the information propagation probability is relatively low. However, when the information propagation probability is relatively high, a larger standard deviation results in a smaller final adoption size. When thresholds follow various distributions, crossover phenomena in phase transition are observed when investigating the relationship of the final adoption size versus the average adoption threshold for some threshold distributions. When thresholds are correlated with degrees, similar crossover phenomena occur when investigating the relationship of the final adoption size versus the degree correlation index. Additionally, we find that increasing the heterogeneity of social influence suppresses the effects of adoption threshold heterogeneity on social contagions in three cases. Our theory predictions agree well with the simulation results.
Keywords:  complex networks      social contagions      heterogeneity      phase transition  
Received:  18 November 2023      Revised:  22 January 2024      Accepted manuscript online:  25 January 2024
PACS:  87.23.Ge (Dynamics of social systems)  
  87.23.Kg (Dynamics of evolution)  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
  89.75.-k (Complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62266030 and 61863025).
Corresponding Authors:  Fu-Zhong Nian     E-mail:  gdnfz@lut.edu.cn

Cite this article: 

Fu-Zhong Nian(年福忠) and Yu Yang(杨宇) Effects of individual heterogeneity on social contagions 2024 Chin. Phys. B 33 058705

[1] Mønsted B, Sapiezyński P, Ferrara E and Lehmann S 2017 PloS One 12 e0184148
[2] Lü L, Chen D B and Zhou T 2011 New J. Phys. 13 123005
[3] Centola D and Macy M 2007 American Journal of Sociology 113 702
[4] Zheng M, Lü L, Zhao M, et al. 2013 Phys. Rev. E 88 012818
[5] Karsai M, Iniguez G, Kaski K and Kertész J 2014 J. Roy. Soc. Inter. 11 20140694
[6] Traag V A 2016 PloS One 11 e0153539
[7] Granovetter M S 1973 American Journal of Sociology 78 1360
[8] Watts D J 2002 Proc. Natl. Acad. Sci. USA 99 5766
[9] Majdandzic A, Podobnik B, Buldyrev S V, Kenett D Y, Havlin S and Eugene Stanley H 2014 Nat. Phys. 10 34
[10] Wang W, Shu P, Zhu Y X, Tang M and Zhang Y C 2015 Chaos 25 103102
[11] Podobnik B, Horvatic D, Lipic T, Perc M, Buldu J M and Stanley H E 2015 J. Roy. Soc. Inter. 12 20150770
[12] Han L, Lin Z, Tang M, Zhou J, Zou Y and Guan S 2020 Phys. Rev. E 101 042308
[13] Miller J C 2007 Phys. Rev. E 76 010101
[14] Yang H, Tang M and Gross T 2015 Sci. Rep. 5 13122
[15] Cui A X, Wang W, Tang M, Fu Y, Liang X and Do Y 2014 Chaos 24 033113
[16] Jo H H, Perotti J I, Kaski K and Kertész J 2014 Phys. Rev. X 4 011041
[17] Zhu Y X, Wang W, Tang M and Ahn Y Y 2017 Phys. Rev. E 96 012306
[18] Wang W, Chen X L and Zhong L F 2018 Physica A 503 604
[19] Wang W, Tang M, Shu P and Wang Z 2016 New J. Phys. 18 013029
[20] Karampourniotis P D, Sreenivasan S, Szymanski B K and Korniss G 2015 PloS one 10 e0143020
[21] Watts D J and Dodds P S 2007 Journal of Consumer Research 34 441
[22] Wang Q, Wang H, Zhang Z, Li Y, Liu Y and Perc M 2018 Physica A 502 570
[23] Chen W, Wang Y and Yang S 2009 Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining pp. 199-208
[24] Wang W, Tang M, Zhang H F, Gao H, Do Y and Liu Z H 2014 Phys. Rev. E 90 042803
[25] Miller J C 2011 Journal of Mathematical Biology 62 349
[26] Pastor-Satorras R and Vespignani A 2002 Phys. Rev. E 65 035108
[27] Castellano C and Pastor-Satorras R 2006 Phys. Rev. Lett. 96 038701
[28] Wang W, Tang M, Zhang H F and Lai Y C 2015 Phys. Rev. E 92 012820
[29] Shi D, Shang F, Chen B, Expert P, Lü L, Yang A, Stanley H E, Lam-biotte R, Evans T S and Li R 2022 arXiv:2209.15497
[30] Bovet A and Makse H A 2022 Encyclopedia of Complexity and Systems Science pp. 1-11
[31] Newman M E 2006 Phys. Rev. E 74 036104
[32] Li R Q, Ming T and Pak-Ming H 2013 Acta Phys. Sin. 62 168903 (in Chinese)
[33] Nian F and Yao S 2018 Applied Mathematics and Computation 339 866
[34] Salehi M, Sharma R, Marzolla M, Magnani M, Siyari P and Montesi D 2015 IEEE Transactions on Network Science and Engineering 2 65
[35] Bródka P, Musial K and Jankowski J 2020 IEEE Access 8 10316
[36] Majhi S, Perc M and Ghosh D 2022 J. Roy. Soc. Inter. 19 20220043
[37] Chowdhary S, Kumar A, Cencetti G, Iacopini I and Battiston F 2021 Journal of Physics: Complexity 2 035019
[38] Huo L and Ma C 2018 Discrete Dynamics in Nature and Society 2018 9314907
[39] Xu H, Li T, Liu X, Liu W and Dong J 2019 Physica A 525 234
[1] Triple points and phase transitions of D-dimensional dyonic AdS black holes with quasitopological electromagnetism in Einstein-Gauss-Bonnet gravity
Ping-Hui Mou(牟平辉), Qing-Quan Jiang(蒋青权), Ke-Jian He(何柯腱), Guo-Ping Li(李国平). Chin. Phys. B, 2024, 33(6): 060401.
[2] Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2
Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), Tian Cui(崔田). Chin. Phys. B, 2024, 33(6): 067104.
[3] Prediction of collapse process and tipping points for mutualistic and competitive networks with k-core method
Dongli Duan(段东立), Feifei Bi(毕菲菲), Sifan Li(李思凡), Chengxing Wu(吴成星), Changchun Lv(吕长春), and Zhiqiang Cai(蔡志强). Chin. Phys. B, 2024, 33(5): 050201.
[4] Individual dynamics and local heterogeneity provide a microscopic view of the epidemic spreading
Youyuan Zhu(朱友源), Ruizhe Shen(沈瑞哲), Hao Dong(董昊), and Wei Wang(王炜). Chin. Phys. B, 2024, 33(5): 058301.
[5] Identifying influential spreaders in complex networks based on density entropy and community structure
Zhan Su(苏湛), Lei Chen(陈磊), Jun Ai(艾均), Yu-Yu Zheng(郑雨语), and Na Bie(别娜). Chin. Phys. B, 2024, 33(5): 058901.
[6] Emergent topological ordered phase for the Ising-XY model revealed by cluster-updating Monte Carlo method
Heyang Ma(马赫阳), Wanzhou Zhang(张万舟), Yanting Tian(田彦婷), Chengxiang Ding(丁成祥), and Youjin Deng(邓友金). Chin. Phys. B, 2024, 33(4): 040503.
[7] Chimera states of phase oscillator populations with nonlocal higher-order couplings
Yonggang Wu(伍勇刚), Huajian Yu(余华健), Zhigang Zheng(郑志刚), and Can Xu(徐灿). Chin. Phys. B, 2024, 33(4): 040504.
[8] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[9] Enhanced stability of FA-based perovskite: Rare-earth metal compound EuBr2 doping
Minna Hou(候敏娜), Xu Guo(郭旭), Meidouxue Han(韩梅斗雪), Juntao Zhao(赵均陶), Zhiyuan Wang(王志元), Yi Ding(丁毅), Guofu Hou(侯国付), Zongsheng Zhang(张宗胜), and Xiaoping Han(韩小平). Chin. Phys. B, 2024, 33(4): 047802.
[10] Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐). Chin. Phys. B, 2024, 33(4): 044203.
[11] Interacting topological magnons in a checkerboard ferromagnet
Heng Zhu(朱恒), Hongchao Shi(施洪潮), Zhengguo Tang(唐政国), and Bing Tang(唐炳). Chin. Phys. B, 2024, 33(3): 037503.
[12] Comparative study on phase transition behaviors of fractional molecular field theory and random-site Ising model
Ting-Yu Liu(刘婷玉), Wei Zhao(赵薇), Tao Wang(王涛), Xiao-Dong An(安小冬), Lai Wei(卫来), and Yi-Neng Huang(黄以能). Chin. Phys. B, 2024, 33(3): 036403.
[13] A multilayer network diffusion-based model for reviewer recommendation
Yiwei Huang(黄羿炜), Shuqi Xu(徐舒琪), Shimin Cai(蔡世民), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2024, 33(3): 038901.
[14] Source localization in signed networks with effective distance
Zhi-Wei Ma(马志伟), Lei Sun(孙蕾), Zhi-Guo Ding(丁智国), Yi-Zhen Huang(黄宜真), and Zhao-Long Hu(胡兆龙). Chin. Phys. B, 2024, 33(2): 028902.
[15] Magnetic and electronic properties of La-doped hexagonal 4H-SrMnO3
Jie Li(李杰), Yinan Chen(陈一楠), Nuo Gong(宫诺), Xin Huang(黄欣), Zhihong Yang(杨志红), and Yakui Weng(翁亚奎). Chin. Phys. B, 2024, 33(1): 017502.
No Suggested Reading articles found!