Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 058701    DOI: 10.1088/1674-1056/acb9f7
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Synchronization coexistence in a Rulkov neural network based on locally active discrete memristor

Ming-Lin Ma(马铭磷)1,†, Xiao-Hua Xie(谢小华)1, Yang Yang(杨阳)1, Zhi-Jun Li(李志军)1, and Yi-Chuang Sun(孙义闯)2
1 School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China;
2 School of Engineering and Technology, University of Hertfordshire, Hatfield AL10 9AB, UK
Abstract  At present, many neuron models have been proposed, which can be divided into discrete neuron models and continuous neuron models. Discrete neuron models have the advantage of faster simulation speed and the ease of understanding complex dynamic phenomena. Due to the properties of memorability, nonvolatility, and local activity, locally active discrete memristors (LADMs) are also suitable for simulating synapses. In this paper, we use an LADM to mimic synapses and establish a Rulkov neural network model. It is found that the change of coupling strength and the initial state of the LADM leads to multiple firing patterns of the neural network. In addition, considering the influence of neural network parameters and the initial state of the LADM, numerical analysis methods such as phase diagram and timing diagram are used to study the phase synchronization. As the system parameters and the initial states of the LADM change, the LADM coupled Rulkov neural network exhibits synchronization transition and synchronization coexistence.
Keywords:  locally active discrete memristor (LADM)      Rulkov      synchronization coexistence  
Received:  18 November 2022      Revised:  14 January 2023      Accepted manuscript online:  08 February 2023
PACS:  87.19.ll (Models of single neurons and networks)  
  87.19.lj (Neuronal network dynamics)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the Natural Science Foundation of Hunan Province, China (Grant Nos. 2022JJ30572, 2022JJ30160, and 2021JJ30671), the National Natural Science Foundations of China (Grant No. 62171401), and the Key Project of Science and Technology of Shunde District (Grant No. 2130218002544).
Corresponding Authors:  Ming-Lin Ma     E-mail:  minglin_ma@xtu.edu.cn

Cite this article: 

Ming-Lin Ma(马铭磷), Xiao-Hua Xie(谢小华), Yang Yang(杨阳), Zhi-Jun Li(李志军), and Yi-Chuang Sun(孙义闯) Synchronization coexistence in a Rulkov neural network based on locally active discrete memristor 2023 Chin. Phys. B 32 058701

[1] Lin H R, Wang C H, Cui L, Sun Y C, Xu C and Yu F 2022 IEEE Trans. lnd. lnform. 18 8839
[2] Jin J, Zhu J C, Zhao J, Chen L, Chen L and Gong J Q 2022 IEEE T. Cvbern. 112 1
[3] Wang M J, An M Y, Zhang X N and Lu H O C 2022 Nonlinear Dyn. 111 1
[4] Li Y Y, Xiao L, Wei Z C and Zhang W 2020 Eur. Phys. J. Special Topics 229 953
[5] Dzakpasu R and Żochowski M 2005 Physica D 208 115
[6] Song X, Wang H and Chen Y 2019 Nonlinear Dyn. 96 2341
[7] Rajagopal K, Moroz I, Ramakrishnan B, Karthikeyn A and Duraisamy P 2021 Nonlinear Dyn. 104 4427
[8] Parastesh F, Rajagopal K, Alsaadi F E, Hayat T, Pham V T and Hussain I 2019 Int. J. Appl. Math. Comput. 354 377
[9] Hindmarsh J L and Rose R M 1982 Nature 296 162
[10] Qi G Y and Wang Z M 2021 Chin. Phys. B 30 120516
[11] Yao Y G, Yang L J, Wang C J, Liu Q, Gui R, Xiong J and Yi M 2018 Complexity Sci. 29 5632650
[12] Yao Y G and Ma J 2018 Cogn. Neurodynamics 12 343
[13] Wu F Q, Wang C N, Jin W Y and Ma J 2019 Physica A 469 81
[14] Guo Z H, Li Z J, Wang M J, Ma M L 2023 Chin. Phys. B 32 038701
[15] Ma M L, Yang Y, Qiu Z C, Peng Y X, Sun Y C, Li Z J and Wang M J 2022 Nonlinear Dyn. 107 1
[16] Bao H, Hua Z Y, Liu W B and Bao B C 2021 Sci. China-Technol. Sci 64 2281
[17] He S B, Zhan D L, Wang H H, Sun K H and Peng Y X 2022 Entropy 24 786
[18] Peng Y X, He S B and Sun K H 2022 Nonlinear Dyn. 107 1263
[19] Ma M L, Lu Y P, Li Z J, Sun Y C and Wang C H 2023 Fractal Fract. 7 8
[20] Muni S S, Rajagopal K, Karthikeyan A and Arun S 2022 Chaos, Solitons & Fractals 155 111759
[21] Lai Q, Yang L, Liu Y 2022 Chaos Solitons Fractals 165 112781
[22] Ma M L, Xiong K L, Li Z J and Sun Y C 2023 Mathematics 11 375
[23] He S B, Zhan D L, Wang H H, Sun K H and Peng Y X 2022 Entropy 24 786
[24] Li H D, L C L and D J R 2022 Nonlinear Dyn. 111 2895
[25] Lu Y M, Wang C H, Deng Q L and Xu C 2022 Chin. Phys. B 31 060502
[26] Cao H, Ibarz B 2010 Phil. Trans. R. Soc. A 368 5071
[27] Tanaka G, Ibarz B, Sanjuan M A and Aihara K 2006 Chaos 16 013113
[28] Baker S, Pinches E M and Lemon R N 2003 Neurophysiol. 89 1941
[29] Deng Z K, Wang C H, Lin H R and Sun Y C 2022 IEEE Trans. Comput-Aided Des. Integr. Circuits Svst. 57 1
[30] Wen Z H, Wang C H, Deng Q L and Lin H R 2022 IEEE Trans. Comput-Aided Des. Integr. Circuits Svst. 110 3823
[31] Wu K J, Li T and Yan M J 2021 Int. J. Mod. Phys. B 35 2150261
[32] Li S, He Y and Cao H 2019 Int. J. Bifurcat. Chaos 29 1950063
[33] Ge P H and Cao H J 2019 Chaos 29 023129
[34] Hu D and Cao 2016 Commun. Nonlinear Sci. Numer. Simul. 35 105
[35] Wang C X and Cao H J 2015 Commun. Nonlinear Sci. Numer. Simul. 20 536
[36] Zhao B O, Xiao M and Zhou Y N 2019 Nanotechnol. 30 425202
[37] Valov I, Linn E, Tappertzhofen S, Schmelzer S, van den Hurk J, Lentz F and Waser R 2013 Nat. Commun. 4 1771
[38] Ding D W, Xiao H, Yang Z L, Luo H L, Hu Y B, Liu Y and Wang M Y 2022 Bursting Behaviors and its Application
[39] Ma T, Mou J, Yan H Z and Cao Y H 2022 Eur. Phys. J. Plus. 137 1135
[40] Chen C J, Min F H, Zhang Y Z and Bao B C 2021 Nonlinear Dyn. 106 255
[41] Lai Q, Lai C, Zhang H and Li C B 2022 Chaos 158 112017
[42] Li Z J and Yi Z W 2022 Electronics Letters 58 539
[43] Yuan F, Xing G B and Deng Y 2023 Chaos 166 112888
[44] Yuan F, Wang Y G and Wang X Y 2015 Chin. Phys. B 24 060506
[45] Adhikari S P, Sah M P, Kim H and Chua L O 2005 IEEE Trans. Circuits Syst. I-Regul. Pap. 60 3008
[46] Rahman Z A S, Al-Kashoash H A, Ramadhan S M and Al-Yasir Y I 2019 Inventions 4 30
[47] Lai Q, Wan Z Q, Zhang H and Chen G R 2022 IEEE Trans. Neural Netw. Learn. Syst. 455 326
[48] Yu F, Shen H, Zhang Z N, Huang Y Y, Cai S and Du S C 2022 Integr. 81 71
[49] Gu Y N, Liang Y, Wang G Y and Xia C Y 2022 Acta Phys. Sin. 71 110501 (in Chinese)
[50] YYu F, Xu S, Xiao X L, Yao W, Huang Y Y, Cai S, Yin B and Li Y 2023 Integr. 90 58
[51] Njitacke Tabekoueng Z, Shankar Muni S, Fonzin Fozin T, Dolvis Leutcho G and Awrejcewicz J 2022 Chaos 32 053114
[52] Yu F, Zang W X, Xiao X L, Yao W, Cai S, Zhang J, Wang C H and Li Y 2023 Mathematics 11 701
[53] Li Z J, Zhou H Y, Wang M J and Ma M L 2021 Nonlinear Dyn. 104 1455
[54] Xu Q, Ju Z T, Ding S K, Feng C T, Chen M and Bao B C 2022 Cogn. Neurodynamics 16 1
[55] Wan Q Z, Li F, Chen S M and Yang Q 2023 Chaos, Solitons & Fractals 169 113259
[56] Wan Q Z, Yan Z D, Li F, Liu J and Chen S M 2022 Nonlinear Dyn. 109 2085
[57] Lin H R, Wang C H, Li C, Sun Y C, Zhang X and Yao W 2020 Nonlinear Dyn. 110 841
[58] Lin H R, Wang C H, Xu C, Zhang X and Iu H H C 2022 IEEE Trans. Comput-Aided Des. Integr. Circuits Svst. 42 942
[59] Dou G, Yu Y, Guo M, Zhang Y M, Sun Z and Li Y X 2017 Chin. Phys. Lett. 34 038502
[60] Yi R J, Ling H J, Fang Y and Jiang P C 2013 Chin. Phys. Lett. 30 110506
[61] Zhou C, Wang C H, Yao W and Lin H R 2022 Appl. Math. Comput. 425 127080
[62] Zhu Y, Wang C H, Sun J and Yu F 2023 Appl. Math. Comput. 11 767
[63] Rulkov N F 2002 Phys. Rev. E 65 041922
[64] Ding X L and Li Y Y 2016 Acta Phys. Sin. 65 210502 (in Chinese)
[65] Gu H H, Li C B, Li Y X, Ge X Z and Lei T F 2023 Nonlinear Dyn. 114 1
[66] Li C B, Jiang Y C, Wang R and Liu Z H 2022 Chaos 32 121104
[1] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[2] Continuous non-autonomous memristive Rulkov model with extreme multistability
Quan Xu(徐权), Tong Liu(刘通), Cheng-Tao Feng(冯成涛), Han Bao(包涵), Hua-Gan Wu(武花干), and Bo-Cheng Bao(包伯成). Chin. Phys. B, 2021, 30(12): 128702.
No Suggested Reading articles found!