|
|
Theoretical investigation of excited dipole bound states of alkali-containing diatomic anions |
Yi Lian(连艺), Lidan Xiao(肖利丹), Lili Bian(边丽丽), Hai-Feng Xu(徐海峰)†, and Bing Yan(闫冰)‡ |
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China |
|
|
Abstract Information about electronic excited states of molecular anions plays an important role in investigating electron attachment and detachment processes. Here we present a high-level theoretical study of the electronic structures of 12 alkali-metal-containing diatomic anions $MX^{-}$ ($MX = {\rm LiH}$, LiF, LiCl, NaF, NaCl, NaBr, RbCl, KCl, KBr, RbI, KI and CsI). The equation-of-motion electron-attachment coupled-cluster singles and doubles (EOM-EA-CCSD) method is used to calculate the electron binding energies (EBEs) of 10 electronic excited states of each of the 12 molecule anions. With addition of different s-/p-/d-type diffusion functions in the basis set, we have identified possible excited dipole bound states (DBSs) of each anion. With the investigation of EBEs on the 12 $MX$s with dipole moment (DM) up to 12.1 D, we evaluate the dependence of the number of anionic excited DBSs on molecular DM. The results indicate that there are at least two or three DBSs of anions with a molecular DM larger than 7 D and a molecule with $\rm DM > 10$ D can sustain a $\pi $-DBS of the anion. Our study has some implications for the excited DBS electronic states of alkali-metal-containing diatomic molecules.
|
Received: 02 January 2024
Revised: 09 January 2024
Accepted manuscript online: 22 January 2024
|
PACS:
|
31.15.vn
|
(Electron correlation calculations for diatomic molecules)
|
|
33.15.-e
|
(Properties of molecules)
|
|
33.15.Ry
|
(Ionization potentials, electron affinities, molecular core binding energy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274178 and 12174148). Support of High Performance Computing Center of Jilin University and the high-performance computing cluster Tiger@ IAMP is acknowledged. |
Corresponding Authors:
Hai-Feng Xu, Bing Yan
E-mail: xuhf@jlu.edu.cn;yanbing@jlu.edu.cn
|
Cite this article:
Yi Lian(连艺), Lidan Xiao(肖利丹), Lili Bian(边丽丽), Hai-Feng Xu(徐海峰), and Bing Yan(闫冰) Theoretical investigation of excited dipole bound states of alkali-containing diatomic anions 2024 Chin. Phys. B 33 053102
|
[1] Desfrançois C, Abdoul-Carime H and Schermann J P 1996 J. Chem. Phys. 104 7792 [2] Millar T J, Walsh C and Field T A 2017 Chem. Rev. 117 1765 [3] Fortenberry R C 2015 J. Phys. Chem. A 119 9941 [4] Crawford O H 1971 Mol. Phys. 20 585 [5] Jordan K D 1979 Acc. Chem. Res. 12 36 [6] Hao H X, Shee J, Upadhyay S, et al. 2018 J. Phys. Chem. Lett. 9 6185 [7] Simons J 2008 J. Phys. Chem. A 112 6401 [8] Jordan K D and Wang F 2003 Annu. Rev. Phys. Chem. 54 367 [9] Gutowski M, Skurski P, Boldyrev A I, et al. 1996 Phys. Rev. A 54 1906 [10] Compton R N, Carman H S and Desfrançois C, et al. 1996 J. Chem. Phys. 105 3472 [11] Sommerfeld T 2002 Phys. Chem. Chem. Phys. 4 2511 [12] Lu Y Z, Tang R L and Fu X X, et al. 2021 J. Chem. Phys. 154 074303 [13] Desfrançois C, Abdoul-Carime H and Schermann J P 1996 Int. J. Mod. Phys. B 10 1339 [14] Desfrancois C, Abdoul-Carime H, Khelifa N, et al. 1994 Phys. Rev. Lett. 73 2436 [15] Lykke K R, Mead R D and Lineberger W C 1984 Phys. Rev. Lett. 52 2221 [16] Mascaritolo K J, Gardner A M and Heaven M C 2015 J. Chem. Phys. 143 114311 [17] Boudaıffa B, Cloutier P, Hunting D, et al. 2000 Science 287 1658 [18] Tulej M, Kirkwood D A, Pachkov M, et al. 1998 Astrophys. J. 506 L69 [19] Yokoyama K, Leach G W, Kim J B, et al. 1996 J. Chem. Phys. 105 10706 [20] Liu H T, Ning C G, Huang D L, et al. 2013 Angew. Chem., Int. Ed. 52 8976 [21] Liu H T, Ning C G, Huang D L, et al. 2014 Angew. Chem., Int. Ed. 53 2464 [22] Dobulis M A, McGee C J, Sommerfeld T, et al. 2021 J. Phys. Chem. A 125 9128 [23] Li X, Sanche L, Rauk A, et al. 2005 J. Phys. Chem. A 109 4591 [24] Fermi E and Teller E 1947 Phys. Rev. 72 399 [25] Turner J E 1977 Am. J. Phys. 45 758 [26] Qian C H, Zhu G Z and Wang L S 2019 J. Phys. Chem. Lett. 10 6472 [27] Hammer N I, Diri K, Jordan K D, et al. 2003 J. Chem. Phys. 119 3650 [28] Hammer N I, Hinde R J, Compton R N, et al. 2004 J. Chem. Phys. 120 685 [29] Adamowicz L and Bartlett R J 1988 J. Chem. Phys. 88 313 [30] Gutsev G L, Nooijen M and Bartlett R J 1997 Chem. Phys. Lett. 276 13 [31] Adamowicz L and McCullough E A Jr. 1984 Chem. Phys. Lett. 107 72 [32] Adamowicz L and Bartlett R J 1985 J. Chem. Phys. 83 6268 [33] Lu Y Z, Tang R L and Ning C G 2021 J. Phys. Chem. Lett. 12 5897 [34] Watts J D, Gauss J and Bartlett R J 1993 J. Chem. Phys. 98 8718 [35] Werner H J, Knowles P J, Knizia G, et al. 2012 WIREs Comput. Mol. Sci. 2 242 [36] Peterson K A and Dunning T H 2002 J. Chem. Phys. 117 10548 [37] Prascher B P, Woon D E, Peterson K A, et al. 2010 Theor. Chem. Acc. 128 69 [38] Woon D E and Dunning T H 1993 J. Chem. Phys. 98 1358 [39] Kendall R A, Dunning T H and Harrison R J 1992 J. Chem. Phys. 96 6796 [40] Lim I S, Schwerdtfeger P, Metz B, et al. 2005 J. Chem. Phys. 122 104103 [41] Peterson K A, Shepler B C, Figgen D, et al. 2006 J. Phys. Chem. A 110 13877 [42] Hill J G and Peterson K A 2017 J. Chem. Phys. 147 244106 [43] Peterson K A and Yousaf K E 2010 J. Chem. Phys. 133 174116 [44] Peterson K A, Figgen D, Goll E, et al. 2003 J. Chem. Phys. 119 11113 [45] Nooijen M and Bartlett R J 1995 J. Chem. Phys. 102 3629 [46] Sinha D, Mukhopadhyay S K, Chaudhuri R, et al. 1989 Chem. Phys. Lett. 154 544 [47] Stanton J F and Gauss J 1994 J. Chem. Phys. 101 8938 [48] Zuev D, Jagau T C, Bravaya K B, et al. 2014 J. Chem. Phys. 141 024102 [49] Epifanovsky E, Gilbert A T B, Feng X, et al. 2021 J. Chem. Phys. 155 084801 [50] Vysotskiy V P, Cederbaum L S, Sommerfeld T, et al. 2012 J. Chem. Theory Comput. 8 893 [51] Lu T and Chen F W 2012 J. Comput. Chem. 33 580 [52] Lian Y, Xiao L D, Li L L, et al. 2023 AIP Advances 13 085208 [53] Zeid I, Abdallah R A, El-Kork N, et al. 2020 Can. J. Phys. 98 45 [54] Huber K P and Herzberg G 1979 Constants of diatomic molecules, (New York: Van Nostrand Reinhold) pp. 146-291 [55] Honig A, Mandel M, Stitch M L, et al. 1954 Phys. Rev. 96 629 [56] Miller T M, Leopold D G, Murray K K, et al. 1986 J. Chem. Phys. 85 2368 [57] Sarkas H W, Hendricks J H, Arnold S T, et al. 1994 J. Chem. Phys. 100 1884 [58] Garrett W R 1982 J. Chem. Phys. 77 3666 [59] Kumar M, Kaur A J and Shanker J 1986 J. Chem. Phys. 84 5735 [60] Brumer P and Karplus M 1973 J. Chem. Phys. 58 3903 [61] Lide D R 1994 CRC Handbook of chemistry and physics. A readyreference book of chemical and physical data, 75th edn (Boca Raton: CRC Press) [62] Wallis R F, Herman R and Milnes H W 1960 J. Mol. Spectrosc. 4 51 [63] Coulson C A and Walmsley M 1967 Proc. Phys. Soc. 91 31 [64] Crawford O H 1967 Proc. Phys. Soc. 91 279 [65] Garrett W R 1971 Phys. Rev. A 3 961 [66] Garrett W R 1980 J. Chem. Phys. 73 5721 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|