Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 097104    DOI: 10.1088/1674-1056/20/9/097104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Vibrational frequency of a strong-coupling polaron in a quantum rod at finite temperatures

Ding Zhao-Hua(丁朝华) and Xiao Jing-Lin(肖景林)
College of Physics and Electronic Information, Inner Mongolia National University, Tongliao 028043, China
Abstract  The Hamiltonian of a quantum rod with a boundary is presented after a coordinate transformation that changes the original ellipsoidal boundary into a spherical one. We then study the effect of temperature on the vibrational frequency and the ground state binding energy of the strong-coupling polaron in the rod. The two quantities are expressed as functions of the aspect ratio of the ellipsoid, the transverse and the longitudinal effective confinement lengths, the temperature and the electron—phonon coupling strength by linear combination operator and unitary transformation methods. It is found that the vibrational frequency and the ground state binding energy will increase rapidly with decreasing transverse and longitudinal effective confinement lengths. They are increasing functions of the electron—phonon coupling strength but become decreasing ones of the temperature and the aspect ratio.
Keywords:  quantum rod      polaron      temperature effect      linear combination operator  
Received:  21 October 2010      Revised:  05 June 2011      Accepted manuscript online: 
PACS:  71.38.-k (Polarons and electron-phonon interactions)  
  63.20.kd (Phonon-electron interactions)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  

Cite this article: 

Ding Zhao-Hua(丁朝华) and Xiao Jing-Lin(肖景林) Vibrational frequency of a strong-coupling polaron in a quantum rod at finite temperatures 2011 Chin. Phys. B 20 097104

[1] Hu J T, Li L S, Yang W D , Manna L, Wang L W and Alvisatos A P 2001 Science 292 2060
[2] Kan S H, Mokari T, Rothenberg E, Rothenberg E and Banin U 2003 Nature 2 155
[3] Bruchez M, Moronne M, Gin P, Weiss S and Alivisatos S P 1998 Science 281 2013
[4] Chi W, Chan W and Nie S 1998 Science 281 2016
[5] Klimov V I, Mikhailovsky A A, Xu S, Malko A, Hollingsworth J A, Leatherdale C A, Eisler H J and Bawendi M G 2000 Science 290 314
[6] Sek G, Podemski P, Misiewicz J, Li L H, Fiore A and Patriarche G 2008 Appl. Phys. Lett. 92 021901
[7] Persano A, Leo G, Manna L and Cola A 2008 J. Appl. Phys. 104 074306
[8] Bruhn B, Valenta J and Linnros J 2009 Nanotechnology 20 505301
[9] Creti A, Rossi M Z, Lanzani G, Anni M, Manna L and Lomascolo M 2006 Phys. Rev. B 73 165410
[10] Zhang X W and Xia J B 2005 Phys. Rev. B 72 205314
[11] Sun Z X, Swart I, Delerue C, Vanmaekelbergh D and Liljeroth P 2009 Phys. Rev. Lett. 102 196401
[12] Li X Z and Xia J B 2002 Phys. Rev. B 66 115316
[13] Comas F, Studart N and Marques G E 2004 Solid State Commun. 130 77
[14] Climente J I, Royo M, Movilla J L and Planelles J 2009 Phys. Rev. B 79 161301(R)
[15] Talaat H, Abdallah T, Mohamed M B, Negm S, Mostafa A and El-Sayed M A 2009 Chem. Phys. Lett. 473 288
[16] Li J B and Wang L W 2003 Nano. Lett. 3 101
[17] Hu J T, Wang L W, Li L S, Yang W D and Alivisatos A P 2002 J. Phys. Chem. B 106 2247
[18] Planelles J, Royo M, Ballester A and Pi M 2009 Phys. Rev. B 80 045324
[19] Li S S and Xia J B 2008 Appl. Phys. Lett. 92 022102
[20] Wang Z W and Xiao J L 2007 Acta Phys. Sin. 56 678 (in Chinese)
[21] Yin J W, Xiao J L, Yu Y F and Wang Z W 2009 Chin. Phys. B 18 446
[22] Li H J, Sun J K and Xiao J L 2010 Chin. Phys. B 19 010314
[23] Chen Y J and Xiao J L 2008 Acta Phys. Sin. 57 6758 (in Chinese)
[1] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[2] Non-universal Fermi polaron in quasi two-dimensional quantum gases
Yue-Ran Shi(石悦然), Jin-Ge Chen(陈金鸽), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2022, 31(8): 080305.
[3] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[4] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[5] Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow
Jun-Jie Su(苏俊杰), Jun Wang(王军), and Guo-Dong Xia(夏国栋). Chin. Phys. B, 2021, 30(7): 075101.
[6] Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature
Ying-Jie Chen(陈英杰) and Feng-Lan Shao(邵凤兰). Chin. Phys. B, 2021, 30(11): 110304.
[7] Polaron and molecular states of a spin-orbit coupled impurity in a spinless Fermi sea
Hong-Hao Yin(尹洪浩), Tian-Yang Xie(谢天扬), An-Chun Ji(纪安春), and Qing Sun(孙青). Chin. Phys. B, 2021, 30(10): 106702.
[8] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[9] Temperature effects on atmospheric continuous-variable quantum key distribution
Shu-Jing Zhang(张淑静), Hong-Xin Ma(马鸿鑫), Xiang Wang(汪翔), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏), Hai-Long Zhang(张海龙). Chin. Phys. B, 2019, 28(8): 080304.
[10] Magnetpolaron effect in two-dimensional anisotropic parabolic quantum dot in a perpendicular magnetic field
Kang-Kang Ju(居康康), CuiXian Guo(郭翠仙), Xiao-Yin Pan(潘孝胤). Chin. Phys. B, 2017, 26(9): 097103.
[11] Polaron effects in cylindrical GaAs/AlxGa1-xAs core-shell nanowires
Hui Sun(孙慧), Bing-Can Liu(刘炳灿), Qiang Tian(田强). Chin. Phys. B, 2017, 26(9): 097302.
[12] Hybrid temperature effect on a quartz crystal microbalance resonator in aqueous solutions
Qiang Li(李强), Yu Gu(谷宇), Bin Xie(谢斌). Chin. Phys. B, 2017, 26(6): 067704.
[13] Temperature and hydrogen-like impurity effects on the excited state of the strong coupling bound polaron in a CsI quantum pseudodot
Jing-Lin Xiao(肖景林). Chin. Phys. B, 2017, 26(2): 027104.
[14] Properties of strong-coupling magneto-bipolaron qubit in quantum dot under magnetic field
Xu-Fang Bai(白旭芳), Ying Zhang(张颖), Wuyunqimuge(乌云其木格), Eerdunchaolu(额尔敦朝鲁). Chin. Phys. B, 2016, 25(7): 077804.
[15] Effects of Shannon entropy and electric field on polaron in RbCl triangular quantum dot
M Tiotsop, A J Fotue, S C Kenfack, N Issofa, H Fotsin, L C Fai. Chin. Phys. B, 2016, 25(4): 048401.
No Suggested Reading articles found!