Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 067704    DOI: 10.1088/1674-1056/26/6/067704
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hybrid temperature effect on a quartz crystal microbalance resonator in aqueous solutions

Qiang Li(李强), Yu Gu(谷宇), Bin Xie(谢斌)
School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  The quartz crystal microbalance (QCM) is an important tool that can sense nanogram changes in mass. The hybrid temperature effect on a QCM resonator in aqueous solutions leads to unconvincing detection results. Control of the temperature effect is one of the keys when using the QCM for high precision measurements. Based on the Sauerbrey's and Kanazawa's theories, we proposed a method for enhancing the accuracy of the QCM measurement, which takes into account not only the thermal variations of viscosity and density but also the thermal behavior of the QCM resonator. We presented an improved Sauerbrey equation that can be used to effectively compensate the drift of the QCM resonator. These results will play a significant role when applying the QCM at the room temperature.
Keywords:  quartz crystal microbalance      hybrid temperature effect      aqueous solution  
Received:  09 March 2017      Revised:  25 April 2017      Accepted manuscript online: 
PACS:  77.65.Fs (Electromechanical resonance; quartz resonators)  
  43.58.Ry (Distortion: frequency, nonlinear, phase, and transient; measurement of distortion)  
  43.58.Hp (Tuning forks, frequency standards; frequency measuring and recording instruments; time standards and chronographs)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61672094).
Corresponding Authors:  Yu Gu     E-mail:  guyu@ustb.edu.cn

Cite this article: 

Qiang Li(李强), Yu Gu(谷宇), Bin Xie(谢斌) Hybrid temperature effect on a quartz crystal microbalance resonator in aqueous solutions 2017 Chin. Phys. B 26 067704

[1] Sauerbrey G 1959 Physics 155 206
[2] Kanazawa K K and Gordon J G 1985 Anal. Chem. 57 1770
[3] O'sullivan C K and Guilbault G G 1999 Biosens. Bioelectron. 14 663
[4] Zhang G 2004 Macromolecules 37 6553
[5] Zhu H B, Wu Z B, Liu G Q, Xi K, Li S S and Dong Y Y 2013 Acta Phys. Sin. 62 014205 (in Chinese)
[6] Rodríguez H and Brennecke J F 2006 J Chem. Eng. Data 51 2145
[7] Zhang S Q, Lu J B, Liang Y, Ma J, Li H, Li X, Liu X J, Wu X Y and Meng X D 2017 Chin. Phys. B 26 024208
[8] Umo M I 2016 Chin. Phys. B 25 117104
[9] Zhang D L, Wang M X, Wong M and Guo H C 2016 Chin. Phys. B 26 016601
[10] Esmeryan K D, Avramov I D and Radeva E I 2015 Sensor Actuat. B-Chem. 216 240
[11] Bechmann R 1960 Proc. IRE 48 1278
[12] Sinha B K and Tiersten H F 1980 J. Appl. Phys. 51 4659
[13] Dunham G C, Benson N H, Petelenz D and Janata J 1995 Anal. Chem. 67 267
[14] Bruckenstein S, Michalski M, Fensore A, Li Z and Hillman A R 1994 Anal. Chem. 66 1847
[15] Itoh A and Ichihashi M 2008 Meas. Sci. Technol. 19 075205
[16] Rahtu A and Ritala M 2002 Appl. Phys. Lett. 80 521
[17] Atkinson J K, Sion R P and Sizeland E 1994 Sensor Actuat. A-Phys. 42 607
[18] Mecea V M, Carlsson J O, Heszler P and Bartan M 1995 Vacuum 46 691
[19] Newnham R E 2004 Ferroelectrics 306 211
[20] Wang J F, Wang N, Huang H Q and Duan W H 2016 Chin. Phys. B 25 117313
[21] Wang J, Shi R X, Sun R G, Hao C C, Li J H and Lu X L 2016 Chin. Phys. B 25 090505
[22] Zhang H, Li S S, Su T C, Hu M H, Li G H, Ma H A and Jia X P 2016 Chin. Phys. B 25 118104
[23] Bechmann R 1956 Proc. IRE 44 1600
[24] Kanazawa K K and Gordon J G 1985 Anal. Chim. Acta 175 99
[1] Effects of square micro-pillar array porosity on the liquid motion of near surface layer
Xiaoxi Qiao(乔小溪), Xiangjun Zhang(张向军), Ping Chen(陈平), Yu Tian(田煜), Yonggang Meng(孟永钢). Chin. Phys. B, 2020, 29(2): 024702.
[2] The universal characteristic water content of aqueous solutions
Xiao Huang(黄晓), Ze-Xian Cao(曹则贤), Qiang Wang(王强). Chin. Phys. B, 2019, 28(6): 065101.
[3] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[4] Full filling of mesoporous carbon nanotubes by aqueous solution at room temperature
Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2019, 28(3): 036801.
[5] Accurate quantification of hydration number for polyethylene glycol molecules
Wei Guo(郭伟), Lishan Zhao(赵立山), Xin Gao(高欣), Zexian Cao(曹则贤), Qiang Wang(王强). Chin. Phys. B, 2018, 27(5): 055101.
[6] Recrystallization of freezable bound water in aqueous solutions of medium concentrations
Lishan Zhao(赵立山), Liqing Pan(潘礼庆), Ailing Ji(纪爱玲), Zexian Cao(曹则贤), Qiang Wang(王强). Chin. Phys. B, 2016, 25(7): 075101.
[7] Vibration analysis of a new polymer quartz piezoelectric crystal sensor for detecting characteristic materials of volatility liquid
Gu Yu (谷宇), Li Qiang (李强), Xu Bao-Jun (许保军), Zhao Zhe (赵喆). Chin. Phys. B, 2014, 23(1): 017804.
No Suggested Reading articles found!