Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 040403    DOI: 10.1088/1674-1056/ad225d
GENERAL Prev   Next  

View of thermodynamic phase transition of the charged Gauss—Bonnet AdS black hole via the shadow

Ke-Jian He(何柯腱)1, Sen Guo(郭森)2, Zhi Luo(罗智)1, and Guo-Ping Li(李国平)3,†
1 College of Physics, Chongqing University, Chongqing 401331, China;
2 Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China;
3 School of Physics and Astronomy, China West Normal University, Nanchong 637000, China
Abstract  We examine thermodynamic phase transition (PT) of the charged Gauss—Bonnet AdS black hole (BH) by utilizing the shadow radius. In this system, we rescale the corresponding Gauss—Bonnet coefficient α by a factor of 1/(D-4), and ensure that α is positive to avoid any singularity problems. The equation derived for the shadow radius indicates that it increases as the event horizon radius increases, making it an independent variable for determining BH temperature. By investigating the PT curve in relation to shadows, we can observe that the shadow radius can be used as an alternative to the event horizon radius in explaining the phenomenon of BH PT. Furthermore, the results indicate that an increase in the parameter α corresponds to a decrease in the temperature of the BH. By utilizing the relationship between the temperature and the shadow radius, it is possible to obtain the thermal profile of the Gauss—Bonnet AdS BH. It is evident that there is an N-type variation in temperature for pressures P<Pc. Additionally, as the parameter α increases, the region covered by shadow expands while the temperature decreases. The utilization of BH shadows as a probe holds immense significance in gaining a deeper understanding of BH thermodynamic behavior.
Keywords:  Gauss—Bonnet AdS black hole      thermodynamic      shadow  
Received:  30 November 2023      Revised:  29 December 2023      Accepted manuscript online:  25 January 2024
PACS:  04.70.-s (Physics of black holes)  
  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  04.50.Kd (Modified theories of gravity)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11903025), the starting fund of China West Normal University (Grant No. 18Q062), the Sichuan Youth Science and Technology Innovation Research Team (Grant No. 21CXTD0038), the Chongqing Science and Technology Bureau (Grant No. cstc2022ycjh-bgzxm0161), and the Natural Science Foundation of Sichuan Province (Grant No. 2022NSFSC1833).
Corresponding Authors:  Guo-Ping Li     E-mail:  gpliphys@yeah.net

Cite this article: 

Ke-Jian He(何柯腱), Sen Guo(郭森), Zhi Luo(罗智), and Guo-Ping Li(李国平) View of thermodynamic phase transition of the charged Gauss—Bonnet AdS black hole via the shadow 2024 Chin. Phys. B 33 040403

[1] Abbott B P et al. 2016 Phys. Rev. Lett. 116 241103
[2] Abbott B P et al. 2016 Phys. Rev. Lett. 116 241102
[3] Abbott B P et al. 2016 Phys. Rev. Lett. 116 061102
[4] Akiyama K et al. 2019 Astrophys. J. Lett. 875 L1
[5] Akiyama K et al. 2019 Astrophys. J. Lett. 875 L2
[6] Akiyama K et al. 2019 Astrophys. J. Lett. 875 L3
[7] Akiyama K et al. 2019 Astrophys. J. Lett. 875 L4
[8] Akiyama K et al. 2019 Astrophys. J. Lett. 875 L5
[9] Akiyama K et al. 2019 Astrophys. J. Lett. 875 L6
[10] Akiyama K et al. 2022 Astrophys. J. Lett. 930 L12
[11] Akiyama K et al. 2022 Astrophys. J. Lett. 930 L13
[12] Akiyama K et al. 2022 Astrophys. J. Lett. 930 L14
[13] Akiyama K et al. 2022 Astrophys. J. Lett. 930 L15
[14] Akiyama K et al. 2022 Astrophys. J. Lett. 930 L16
[15] Akiyama K et al. 2022 Astrophys. J. Lett. 930 L17
[16] Wald R M 1984 General Relativity (The University of Chicago Press)
[17] Synge J L 1966 Mon. Not. R. Astron. Soc. 131 463
[18] Luminet J P 1979 Astron. Astrophys. 75 228
[19] Bardeen J M 1973 Timelike and null geodesics in the Kerr metric, in black holes. In:Proceedings, Ecole d'Eté de Physique Théorique:Les Astres Occlus, Les Houches, France, August 1972, pp. 215——240
[20] Chandrasekhar S 1983 The Mathematical Theory of Black Holes (Oxford:Oxford University Press)
[21] Banerjee I, Chakraborty S and SenGupta S 2020 Phys. Rev. D 101 041301
[22] Safarzadeh M, Loeb A and Reid M 2019 Mon. Not. R. Astron. Soc. 488 L90
[23] Amarilla L, Eiroa E F and Giribet G 2010 Phys. Rev. D 81 124045
[24] Grenzebach A, Perlick V and ämmerzahl C L 2014 Phys. Rev. D 89 124004
[25] Hu Z, Zhong Z, Li P C, Guo M and Chen B 2021 Phys. Rev. D 103 044057
[26] Wei S W and Liu Y X 2013 J. Cosmol. Astropart. Phys. 11 063
[27] Wang H M, Xu Y M and Wei S W 2019 J. Cosmol. Astropart. Phys. 03 046
[28] Narayan R, Johnson M D and Gammie C F 2019 Astrophys. J. 885 L33
[29] Gralla S E, Holz D E and Wald R M 2019 Phys. Rev. D 100 024018
[30] Zeng X X, Zhang H Q and Zhang H 2020 Eur. Phys. J. C 80 872
[31] Peng J, Guo M and Feng X H 2021 Chin. Phys. C 45 085103
[32] He K J, Tan S C and Li G P 2022 Eur. Phys. J. C 82 81
[33] Li G P and He K J 2021 Eur. Phys. J. C 81 1018
[34] Zeng X X, He K J and Li G P 2022 Sci. China Phys. Mech. Astron. 65 290411
[35] Li G P and He K J 2021 J. Cosmol. Astropart. Phys. 06 037
[36] He K J, Guo S, Tan S C and Li G P 2022 Chin. Phys. C 46 085106
[37] Guo S, Li G R and Liang E W 2022 Phys. Rev. D 105 023024
[38] Zhu Y and Wang T 2021 Phys. Rev. D 104 104052
[39] Gan Q, Wang P, Wu H W and Yang H T 2021 Phys. Rev. D 104 044049
[40] He K J, Zhang X and Li X 2022 Chin. Phys. C 46 075103
[41] Hawking S W 1975 Commun. Math. Phys. 43 199
[42] Hawking S W 1976 Phys. Rev. D 13 191
[43] Bekenstein J D 1972 Lett. Nuovo Cim. 4 737
[44] Bekenstein J D 1974 Phys. Rev. D 9 3292
[45] Hawking S W and Page D N 1983 Commun. Math. Phys. 87 577
[46] Kubiznak D and Mann R B 2012 J. High Energy Phys. 2012 033
[47] Altamirano N, Kubizňák D, Mann R B and Sherkatghanad Z 2014 Class. Quantum Grav. 31 042001
[48] Altamirano N, Kubiznak D and Mann R B 2013 Phys. Rev. D 88 101502
[49] Wei S W and Liu Y X 2014 Phys. Rev. D 90 044057
[50] Hendi S H, Panahiyan S and Eslam Panah B 2015 Int. J. Mod. Phys. D 25 1650010
[51] Kubiznak D and Simovic F 2016 Class. Quantum Grav. 33 245001
[52] Hendi S H, Eslam Panah B and Panahiyan S 2015 J. High Energy Phys. 2015 157
[53] Hendi S H, Panahiyan S, Panah B E and Armanfard Z 2016 Eur. Phys. J. C 76 396
[54] Hennigar R A, Mann R B and Tjoa E 2017 Phys. Rev. Lett. 118 021301
[55] Hendi S H, Eslam Panah B, Panahiyan S and Talezadeh M S 2017 Eur. Phys. J. C 77 133
[56] Jafarzade K, Sadeghi J, Panah B E and Hendi S H 2021 Annals Phys. 432 168577
[57] Kubiznak D, Mann R B and Teo M 2017 Class. Quantum Grav. 34 063001
[58] Wei S W and Liu Y X 2018 Phys. Rev. D 97 104027
[59] Chandrasekhar B and Mohapatra S 2019 Phys. Lett. B 791 367
[60] Zhang M, Han S Z, Jiang J and Liu W B 2019 Phys. Rev. D 99 065016
[61] Zhang M and Guo M 2020 Eur. Phys. J. C 80 790
[62] Belhaj A, Chakhchi L, El Moumni H, Khalloufi J and Masmar K 2020 Int. J. Mod. Phys. A 35 2050170
[63] Cai X C and Miao Y G 2021 arXiv:2107.08352[gr-qc]
[64] Wang C, Wu B, Xu Z M and Yang W L 2022 Nucl. Phys. B 976 115698
[65] Guo S, Li G R and Li G P 2022 2022 Chin. Phys. C 46 095101
[66] Glavan D and Lin C 2020 Phys. Rev. Lett. 124 081301
[67] Fernandes P G S 2020 Phys. Lett. B 805 135468
[68] Zhang Y P, Wei S W and Liu Y X 2020 Universe 6 103
[69] Ge X H and Sin S J 2020 Eur. Phys. J. C 80 695
[70] Guo M and Li P C 2020 Eur. Phys. J. C 80 588
[71] Wei S W and Liu Y X 2021 Eur. Phys. J. Plus 136 436
[72] Hosseini Mansoori S A 2021 Phys. Dark Univ. 31 100776
[73] Hegde K, Naveena Kumara A, Rizwan C L A, Ali M S and Ajith K M 2021 Ann. Phys. 429 168461
[74] Wang Y Y, Su B Y and Li N 2021 Phys. Dark Univ. 31 100769
[75] Ghosh S G, Singh D V, Kumar R and Maharaj S D 2021 Ann. Phys. 424 168347
[76] Li H L, Zeng X X and Lin R 2020 Eur. Phys. J. C 80 652
[77] Wei S W and Liu Y X 2020 Phys. Rev. D 101 104018
[78] Zeng X. X, Hu X Y and He K J 2019 Nucl. Phys. B 949 114823
[79] Singh D V and Siwach S 2020 Phys. Lett. B 808 135658
[80] Eiroa E F and Sendra C M 2018 Eur. Phys. J. C 78 91
[1] Thermodynamics in a quantum corrected Reissner—Nordström—AdS black hole and its GUP-corrections
Jian-Jun Song(宋建君) and Cheng-Zhou Liu(刘成周). Chin. Phys. B, 2024, 33(4): 040402.
[2] Thermodynamic limit of the XXZ central spin model with an arbitrary central magnetic field
Fa-Kai Wen(温发楷) and Kun Hao(郝昆). Chin. Phys. B, 2023, 32(9): 090307.
[3] Shadow thermodynamics of AdS black hole with the nonlinear electrodynamics term
He-Bin Zheng(郑何斌), Ping-Hui Mou(牟平辉), Yun-Xian Chen(陈芸仙), and Guo-Ping Li(李国平). Chin. Phys. B, 2023, 32(8): 080401.
[4] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽) and Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[5] Thermodynamics of warm axionic Abelian gauge inflation
Xi-Bin Li(李喜彬) and Yan-Ling Wu(武燕玲). Chin. Phys. B, 2023, 32(11): 119801.
[6] Optimal driving field for multipartite quantum battery coupled with a common thermal bath
Z Q Yang(杨梓骞), L K Zhou(周立坤), Z Y Zhou(周正阳), G R Jin(金光日), L Cheng(程龙), and X G Wang(王晓光). Chin. Phys. B, 2023, 32(11): 110301.
[7] The application of quantum coherence as a resource
Si-Yuan Liu(刘思远) and Heng Fan(范桁). Chin. Phys. B, 2023, 32(11): 110304.
[8] Quantum Stirling heat engine with squeezed thermal reservoir
Nikolaos Papadatos. Chin. Phys. B, 2023, 32(10): 100702.
[9] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[10] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[11] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[12] Understanding the battery safety improvement enabled by a quasi-solid-state battery design
Luyu Gan(甘露雨), Rusong Chen(陈汝颂), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(11): 118202.
[13] Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy
Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣). Chin. Phys. B, 2021, 30(9): 090504.
[14] Thermodynamic properties of massless Dirac-Weyl fermions under the generalized uncertainty principle
Guang-Hua Xiong(熊光华), Chao-Yun Long(龙超云), and He Su(苏贺). Chin. Phys. B, 2021, 30(7): 070302.
[15] Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface
Wen-Xiao Shi(时文潇), Hui Zhang(张慧), Shao-Jin Qi(齐少锦), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Bao-Gen Shen(沈保根), Yuan-Sha Chen(陈沅沙), and Ji-Rong Sun(孙继荣). Chin. Phys. B, 2021, 30(7): 077302.
No Suggested Reading articles found!