|
|
Thermodynamics in a quantum corrected Reissner—Nordström—AdS black hole and its GUP-corrections |
Jian-Jun Song(宋建君) and Cheng-Zhou Liu(刘成周)† |
Department of Physics, Shaoxing University, Shaoxing 312000, China |
|
|
Abstract We calculate the thermodynamic quantities in the quantum corrected Reissner—Nordström—AdS (RN-AdS) black hole, and examine their quantum corrections. By analyzing the mass and heat capacity, we give the critical state and the remnant state, respectively, and discuss their consistency. Then, we investigate the quantum tunneling from the event horizon of massless scalar particle by using the null geodesic method, and charged massive boson W± and fermions by using the Hamilton—Jacob method. It is shown that the same Hawking temperature can be obtained from these tunneling processes of different particles and methods. Next, by using the generalized uncertainty principle (GUP), we study the quantum corrections to the tunneling and the temperature. Then the logarithmic correction to the black hole entropy is obtained.
|
Received: 10 October 2023
Revised: 08 December 2023
Accepted manuscript online: 04 January 2024
|
PACS:
|
04.60.Bc
|
(Phenomenology of quantum gravity)
|
|
04.70.Dy
|
(Quantum aspects of black holes, evaporation, thermodynamics)
|
|
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LY14A030001). |
Corresponding Authors:
Cheng-Zhou Liu
E-mail: czlbj20@163.com
|
Cite this article:
Jian-Jun Song(宋建君) and Cheng-Zhou Liu(刘成周) Thermodynamics in a quantum corrected Reissner—Nordström—AdS black hole and its GUP-corrections 2024 Chin. Phys. B 33 040402
|
[1] Hawking S W 1974 Nature 248 30 [2] Hawking S W 1975 Commun. Math. Phys. 43 199 [3] Wald R M 2001 Living Rev. Relativ. 4 6 [4] Hegde K, Kumara A N, Rizwan C L, et al. arXiv:2003.08778[hep-th] [5] Cai R G, Cao L M, Li L, et al. 2013 J. High Energ. Phys. 2013 5 [6] Page D N 1995 arXiv:9305040[hep-th] [7] Hu X Y, He K J, Li Z H and Li G P 2020 Chin. Phys. B 29 050401 [8] Nie Z, Liu Y, Chen J and Wang Y 2022 Chin. Phys. B 31 050401 [9] Sun W and Ge X H 2021 Chin. Phys. B 30 109501 [10] Singh D V, Singh B K and Upadhyay S 2021 Ann. Phys. 434 168642 [11] Page D N 1995 arXiv:9305040[hep-th] [12] Hawking S W 1976 Phys. Rev. D 14 2460 [13] Penington G 2020 J. High Energy Phys. 2020 2 [14] Almheiri, A, Engelhardt N, Marolf D, et al. 2019 J. High Energ. Phys. 2019 63 [15] Almheiri A, Hartman T, Maldacena J, Shaghoulian E and Tajdini A 2021 Rev. Mod. Phys. 93 035002 [16] Hooft G 1996 Int. J. Mod. Phys. A 11 4623 [17] Susskind L 1995 J. Math. Phys. 36 6377 [18] Bojowald M 2001 Phys. Rev. Lett. 86 5227 [19] Husain V and Winkler O 2004 Phys. Rev. D 69 084016 [20] Garay L J 1995 Int. J. Mod. Phys. A 10 145 [21] Ashtekar A and Bianchi E 2021 Rep. Prog. Phys. 84 042001 [22] Parikh M K and Wilczek F 2001 Phys. Rev. Lett. 85 5042 [23] Parikh M K 2004 Int. J. Mod. Phys. D 13 2351 [24] Vagenas E C 2001 Phys. Lett. B 503 399 [25] Medved A 2002 Phys. Rev. D 66 124009 [26] Liu C Z, Zhang J Y and Zhao Z 2006 Phys. Lett. B 639 670 [27] Ablikim M, Bai J, Ban Y, et al. 2008 Phys. Rev. Lett. 101 102004 [28] Arzano M, Medved A J M and Vagenas E C 2005 J. High Energy Phys. 09 037 [29] Angheben M, Nadalini M, Vanzo L, et al. 2005 Journal of High Energy Physics 2005 014 [30] Shankaranarayanan S, Srinivasan K and Padmanabhan T 2001 Mod. Phys. Lett. A 16 571 [31] Srinivasan K and Padmanabhan T 1999 Phys. Rev. D 60 024007 [32] Kerner R and Mann R B 2006 Phys. Rev. D 73 104010 [33] Kerner R and Mann R B 2008 Phys. Lett. B 665 277 [34] Kerner R and Mann R B 2008 Class. Quantum Gravity 25 095014 [35] Li X Q and Chen G R 2015 Phys. Lett. B 751 34 [36] Mitra P 2007 Phys. Lett. B 648 240 [37] Vieira H, Bezerra V and Muniz C 2014 Ann. Phys. 350 14 [38] Konoplya R and Zhidenko A 2014 Phys. Rev. D 90 064048 [39] Vanzo L, Acquaviva G and Criscienzo R D 2011 Class. Quantum Gravity 28 183001 [40] Kruglov S I 2014 Int. J. Mod. Phys. A 29 1450118 [41] Sakalli I and Ovgun A 2015 J. Exp. Theor. Phys. 121 404 [42] Sakalli I and Ovgun A 2015 Eur. Phys. J. Plus 130 1 [43] Sakalli I and Övgün A 2016 Gen. Relativ. Gravit. 48 1 [44] Chen G R, Zhou S and Huang Y C 2015 Astrophys. Space Sci. 357 1 [45] Kruglov S 2014 Mod. Phys. Lett. A 29 1450203 [46] Sakalli I and Ovgun A 2015 Astrophys. Space Sci. 359 32 [47] Yale A and Mann R B 2009 Phys. Lett. B 673 168 [48] Amati D, Ciafaloni M and Veneziano G 1989 Phys. Lett. B 216 41 [49] Amelino-Camelia G 2002 Int. J. Mod. Phys. D 11 35 [50] Amelino-Camelia G 2013 Living Rev. Relativ. 16 1 [51] Tawfik A N and Diab A M 2014 Int. J. Mod. Phys. D 23 1430025 [52] Gross D J and Mende P F 1987 Phys. Lett. B 197 129 [53] Gross D J and Mende P F 1988 Nucl. Phys. B 303 407 [54] Okyay M and Övgün A 2022 J. Cosmol. Astropart. Phys. 2022 009 [55] Chen P, Ong Y C and Yeom D 2014 J. High Energy Phys. 2014 21 [56] Gangopadhyay S, Dutta A and Saha A 2014 Gen. Relativ. Gravit. 46 1661 [57] Bina A, Jalalzadeh S and Moslehi A 2010 Phys. Rev. D 81 023528 [58] El-Nabulsi R A and Anukool W 2022 Chin. Phys. B 32 090303 [59] Kazakov D I and Solodukhin S N 1994 Nucl. Phys. B 429 153 [60] Wu S and Liu C 2022 Class. Quantum Gravity 39 085009 [61] Banerjee R, Ghosh S and Roychowdhury D 2011 Phys. Lett. B 696 156 [62] Dolan B P 2011 Class. Quantum Gravity 28 235017 [63] Dolan B P 2011 Class. Quantum Gravity 28 125020 [64] Kubizňák D and Mann R B 2012 J. High Energy Phys. 2012 33 [65] Wu S and Liu C 2020 Int. J. Theor. Phys. 59 2681 [66] Adler R J, Chen P and Santiago D I 2001 Class. Quantum Gravity 33 2101 [67] Painlevé P 1921 Acad. Sci. Ser. Non Specifiee 173 677 [68] Commins E D and Bucksbaum P H 1983 Weak interactions of leptons and quarks (Cambridge:Cambridge University Press) pp. 1——7 [69] Kempf A, Mangano G and Mann R B 1995 Phys. Rev. D 52 1108 [70] Medved A and Vagenas E C 2004 Phys. Rev. D 70 124021 [71] Anacleto M, Brito F and Passos E 2015 Phys. Lett. B 749 181 [72] Casadio R, Nicolini P and Da Rocha R 2018 Class. Quantum Gravity 35 185001 [73] Yoon M, Ha J and Kim W 2007 Phys. Rev. D 76 047501 [74] Feng Z W, Li H L, Zu X T, et al. 2016 Eur. Phys. J. C 76 212 [75] Zhao R, Li H F and Zhang L C 2009 Acta Phys. Sin. 58 2193 (in Chinese) [76] Sadeghi J and Reza Shajiee V 2017 Eur. Phys. J. Plus. 132 132 [77] Liu M L, Gui Y X and Liu H Y 2008 Phys. Rev. D 78 124003 [78] Chang L N, Minic D, Okamura N and Takeuchi T 2002 Phys. Rev. D 65 125028 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|