Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 046501    DOI: 10.1088/1674-1056/ad2260
Special Issue: SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
SPECIAL TOPIC—Heat conduction and its related interdisciplinary areas Prev   Next  

Phonon transport properties of Janus Pb2XAs(X = P, Sb, and Bi) monolayers: A DFT study

Jiaxin Geng(耿嘉鑫)1,†, Pei Zhang(张培)2,†, Zhunyun Tang(汤准韵)1,‡, and Tao Ouyang(欧阳滔)1,§
1 School of Physics and Optoelectronics and Hunan Key Laboratory for Micro-Nano Energy Materials and Device, Xiangtan University, Xiangtan 411105, China;
2 Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, School of Physics and Electronics, Hunan University of Science and Technology, Xiangtan 411201, China
Abstract  Grasping the underlying mechanisms behind the low lattice thermal conductivity of materials is essential for the efficient design and development of high-performance thermoelectric materials and thermal barrier coating materials. In this paper, we present a first-principles calculations of the phonon transport properties of Janus Pb2PAs and Pb2SbAs monolayers. Both materials possess low lattice thermal conductivity, at least two orders of magnitude lower than graphene and h-BN. The room temperature thermal conductivity of Pb2SbAs (0.91 W/mK) is only a quarter of that of Pb2PAs (3.88 W/mK). We analyze in depth the bonding, lattice dynamics, and phonon mode level information of these materials. Ultimately, it is determined that the synergistic effect of low group velocity due to weak bonding and strong phonon anharmonicity is the fundamental cause of the intrinsic low thermal conductivity in these Janus structures. Relative regular residual analysis further indicates that the four-phonon processes are limited in Pb2PAs and Pb2SbAs, and the three-phonon scattering is sufficient to describe their anharmonicity. In this study, the thermal transport properties of Janus Pb2PAs and Pb2SbAs monolayers are illuminated based on fundamental physical mechanisms, and the low lattice thermal conductivity endows them with the potential applications in the field of thermal barriers and thermoelectrics.
Keywords:  lattice thermal conductivity      weak bonding      phonon anharmonicity      first principles calculations  
Received:  06 December 2023      Revised:  20 January 2024      Accepted manuscript online:  25 January 2024
PACS:  65.40.-b (Thermal properties of crystalline solids)  
  63.20.kg (Phonon-phonon interactions)  
  63.20.Ry (Anharmonic lattice modes)  
  63.20.dk (First-principles theory)  
Fund: Project supported by the Youth Science and Technology Talent Project of Hunan Province of China (Grant No. 2022RC1197) and the National Natural Science Foundation of China (Grant No. 52372260).
Corresponding Authors:  Zhunyun Tang, Tao Ouyang     E-mail:  202331520177@smail.xtu.edu.cn;ouyangtao@xtu.edu.cn

Cite this article: 

Jiaxin Geng(耿嘉鑫), Pei Zhang(张培), Zhunyun Tang(汤准韵), and Tao Ouyang(欧阳滔) Phonon transport properties of Janus Pb2XAs(X = P, Sb, and Bi) monolayers: A DFT study 2024 Chin. Phys. B 33 046501

[1] Liu B, Liu Y, Zhu C, Xiang H, Chen H, Sun L, Gao Y and Zhou Y 2019 J. Mater. Sci. Technol. 35 833
[2] Padture N P, Gell M and Jordan E H 2002 Science 296 280
[3] Bell L E 2008 Science 321 1457
[4] Qin B, Wang D, Liu X, Qin Y, Dong J F, Luo J, Li J W, Liu W, Tan G, Tang X, Li J F, He J and Zhao L D 2021 Science 373 556
[5] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[6] Ouyang T, Jiang E, Tang C, Li J, He C and Zhong J 2018 J. Mater. Chem. A 6 21532
[7] Ouyang T and Hu M 2015 Phys. Rev. B 92 235204
[8] Wei D, Zhou E, Zheng X, Wang H, Shen C, Zhang H, Qin Z and Qin G 2022 NPJ Comput. Mater. 8 260
[9] Shahsavar A, Salimpour M R, Saghafian M and Shafii M B 2016 J. Mech. Sci. Technol. 30 809
[10] Ouyang T, Liu Q, Chen M, Tang C, Li J, Zhang C, He C, Bao H, Zhong J and Hu M 2019 ES Energy Environ. 3 88
[11] Tian Z, Garg J, Esfarjani K, Shiga T, Shiomi J and Chen G 2012 Phys. Rev. B 85 184303
[12] Hu M and Poulikakos D 2012 Nano Lett. 12 5487
[13] Tang Z, Wang X, Li J, He C, Chen M, Tang C and Ouyang T 2023 Phys. Rev. B 108 214304
[14] Skoug E J and Morelli D T 2011 Phys. Rev. Lett. 107 235901
[15] Schweika W, Hermann R P, Prager M, PerŞon J and Keppens V 2007 Phys. Rev. Lett. 99 125501
[16] Paschen S, Carrillo-Cabrera W, Bentien A, Tran V H, Baenitz M, Grin Y and Steglich F 2001 Phys. Rev. B 64 214404
[17] Lee S, Esfarjani K, Luo T, Zhou J, Tian Z and Chen G 2014 Nat. Commun. 5 3525
[18] Peng B, Zhang H, Shao H, Xu Y, Ni G, Zhang R and Zhu H 2016 Phys. Rev. B 94 245420
[19] Gu X, Wei Y, Yin X, Li B and Yang R 2018 Rev. Mod. Phys. 90 041002
[20] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S and Shi L 2010 Science 328 213
[21] Balandin A A 2011 Nat. Mater. 10 569
[22] Feng T, Lindsay L and Ruan X 2017 Phys. Rev. B 96 161201
[23] Sadeghi M M, Pettes M T and Shi L 2012 Solid State Commun. 152 1321
[24] Fan H, Wu H, Lindsay L and Hu Y 2019 Phys. Rev. B 100 085420
[25] Cai Q, Scullion D, Gan W, Falin A, Zhang S, Watanabe K, Taniguchi T, Chen Y, Santos E J G and Li L H 2019 Sci. Adv. 5 eaav0129
[26] Li W, Carrete J and Mingo N 2013 Appl. Phys. Lett. 103 253103
[27] Liu X, Zhang G, Pei Q X and Zhang Y W 2013 Appl. Phys. Lett. 103 133113
[28] Jiang J W, Park H S and Rabczuk T 2013 J. Appl. Phys. 114 064307
[29] Ashton M, Sinnott S B and Hennig R G 2016 Appl. Phys. Lett. 109 192103
[30] Özdamar B, Özbal G, cCi nar M N, Sevim K, Kurt G, Kaya B and Sevinçli H 2018 Phys. Rev. B 98 045431
[31] Li L, Wang W, Gong P, Zhu X, Deng B, Shi X, Gao G, Li H and Zhai T 2018 Adv. Mater. 30 1706771
[32] Barreteau C, Michon B, Besnard C and Giannini E 2016 J. Cryst. Growth 443 75
[33] Kim D, Park K, Lee J H, Kwon I S, Kwak I H and Park J 2021 Small 17 2006310
[34] Lee K, Kamali S, Ericsson T, Bellard M and Kovnir K 2016 Chem. Mater. 28 2776
[35] Cheng A Q, He Z, Zhao J, Zeng H and Chen R S 2018 ACS Appl. Mater. Interfaces 10 5133
[36] Chen Q Y, Huang F J, Ruan J Q, Ma T, Xiong K and He Y 2022 Phys. Rev. Mater. 6 104005
[37] Ozbey D H, Kilic M E and Durgun E 2022 Phys. Rev. Appl. 17 034043
[38] Huang B, Zhuang H L, Yoon M, Sumpter B G and Wei S H 2015 Phys. Rev. B 91 121401
[39] Somaiya R N, Sonvane Y A and Gupta S K 2020 Phys. Chem. Chem. Phys. 22 3990
[40] Niasadegh N, Naseri M and Rezaee S 2021 Opt. Quantum Electron. 53 502
[41] Huang H H, Fan X, Singh D J and Zheng W T 2019 J. Mater. Chem. C 7 10652
[42] Wu Y, Yang C H, Zhang H N, Zhu L H, Wang X Y, Li Y Q, Zhu S Y and Wang X C 2022 Appl. Surf. Sci. 589 152999
[43] He Q W, Wu Y, Yang C H, Zhang H N, Tang D S, Shang X and Wang X C 2023 Nanoscale 15 10458
[44] Liu H Y, Wang Y Y, Chen Z Y, Hou T P, Wu K M and Lin H F 2023 Phys. Chem. Chem. Phys. 25 16559
[45] Liu M Y, Gong L, He Y and Cao C 2021 Phys. Rev. B 104 035409
[46] Liu M Y, Gong L, He Y and Cao C 2021 Phys. Rev. B 103 075421
[47] Babaee Touski S and Ghobadi N 2021 Phys. Rev. B 103 165404
[48] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[49] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[50] Tadano T and Tsuneyuki S 2015 Phys. Rev. B 92 054301
[51] Tadano T, Gohda Y and Tsuneyuki S 2014 J. Phys.:Condens. Matter 26 225402
[52] Taheri A, Pisana S and Singh C V 2021 Phys. Rev. B 103 235426
[53] Zhou F, Nielson W, Xia Y and Ozolinš V 2019 Phys. Rev. B 100 184308
[54] Zhou F, Sadigh B, Aberg D, Xia Y and Ozolinš V 2019 Phys. Rev. B 100 184309
[55] Zhou F, Nielson W, Xia Y and Ozolinš V 2014 Phys. Rev. Lett. 113 185501
[56] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747
[57] Nika D L and Balandin A A 2017 Rep. Prog. Phys. 80 036502
[58] Yu L, Chen A, Wang X, Wang H, Qin Z and Qin G 2022 Phys. Rev. B 106 125410
[59] Tang Z, Wang X, Li J, He C, Chen M, Li X, Tang C and Ouyang T 2023 Appl. Phys. Lett. 123 102201
[60] Xie H, Hu M and Bao H 2014 Appl. Phys. Lett. 104 131906
[61] Wang X and Tabarraei A 2016 Appl. Phys. Lett. 108 191905
[62] Maintz S, Deringer V L, Tchougréeff A L and Dronskowski R 2016 J. Comput. Chem. 37 1030
[63] Feng Z, Fu Y, Zhang Y and Singh D J 2020 Phys. Rev. B 101 064301
[64] Mukhopadhyay S, Singh D J and Reinecke T L 2020 Chem. Mater. 32 8906
[65] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[66] Yue S Y, Qin G, Zhang X, Sheng X, Su G and Hu M 2017 Phys. Rev. B 95 085207
[67] Yue S Y, Zhang X, Qin G, Phillpot S R and Hu M 2017 Phys. Rev. B 95 195203
[1] New carbon-nitrogen-oxygen compounds as high energy density materials
Junyu Shen(沈俊宇), Qingzhuo Duan(段青卓), Junyi Miao(苗俊一), Shi He(何适),Kaihua He(何开华), Wei Dai(戴伟), and Cheng Lu(卢成). Chin. Phys. B, 2023, 32(9): 096302.
[2] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[3] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[4] Strong anharmonicity-assisted low lattice thermal conductivities and high thermoelectric performance in double-anion Mo2AB2 (A = S, Se, Te; B=Cl, Br, I) semiconductors
Haijun Liao(廖海俊), Le Huang(黄乐), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Zhipeng Sun(孙志鹏), and Jingbo Li(李京波). Chin. Phys. B, 2023, 32(10): 107304.
[5] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[6] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[7] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[8] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[9] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[10] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[11] Thermoelectric properties of orthorhombic silicon allotrope Si (oP32) from first-principles calculations
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chao-Yu He(何朝宇), Jin Li(李金), Chun-Xiao Zhang(张春小), and Jian-Xin Zhong(钟建新). Chin. Phys. B, 2020, 29(11): 118401.
[12] Synthesis and thermoelectric properties of Nd-single filled p-type skutterudites
Hong Wu(吴宏), Nusrat Shaheen, Heng-Quan Yang(杨恒全), Kun-Ling Peng(彭坤岭), Xing-Chen Shen(沈星辰), Guo-Yu Wang(王国玉), Xu Lu(卢旭), Xiao-Yuan Zhou(周小元). Chin. Phys. B, 2018, 27(4): 047203.
[13] Theoretical calculations of structural, electronic, and elastic properties of CdSe1-xTex: A first principles study
M Shakil, Muhammad Zafar, Shabbir Ahmed, Muhammad Raza-ur-rehman Hashmi, M A Choudhary, T Iqbal. Chin. Phys. B, 2016, 25(7): 076104.
[14] Mobility enhancement of strained GaSb p-channel metal—oxide—semiconductor field-effect transistorswith biaxial compressive strain
Yan-Wen Chen(陈燕文), Zhen Tan(谭桢), Lian-Feng Zhao(赵连锋), Jing Wang(王敬), Yi-Zhou Liu(刘易周),Chen Si(司晨), Fang Yuan(袁方), Wen-Hui Duan(段文晖), Jun Xu(许军). Chin. Phys. B, 2016, 25(3): 038504.
[15] Theoretical investigation of sulfur defects on structural, electronic, and elastic properties of ZnSe semiconductor
Muhammad Zafar, Shabbir Ahmed, M. Shakil, M. A. Choudhary, K. Mahmood. Chin. Phys. B, 2015, 24(7): 076106.
No Suggested Reading articles found!