Special Issue:
SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
|
SPECIAL TOPIC—Heat conduction and its related interdisciplinary areas |
Prev
Next
|
|
|
Phonon transport properties of Janus Pb2XAs(X = P, Sb, and Bi) monolayers: A DFT study |
Jiaxin Geng(耿嘉鑫)1,†, Pei Zhang(张培)2,†, Zhunyun Tang(汤准韵)1,‡, and Tao Ouyang(欧阳滔)1,§ |
1 School of Physics and Optoelectronics and Hunan Key Laboratory for Micro-Nano Energy Materials and Device, Xiangtan University, Xiangtan 411105, China; 2 Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, School of Physics and Electronics, Hunan University of Science and Technology, Xiangtan 411201, China |
|
|
Abstract Grasping the underlying mechanisms behind the low lattice thermal conductivity of materials is essential for the efficient design and development of high-performance thermoelectric materials and thermal barrier coating materials. In this paper, we present a first-principles calculations of the phonon transport properties of Janus Pb2PAs and Pb2SbAs monolayers. Both materials possess low lattice thermal conductivity, at least two orders of magnitude lower than graphene and h-BN. The room temperature thermal conductivity of Pb2SbAs (0.91 W/mK) is only a quarter of that of Pb2PAs (3.88 W/mK). We analyze in depth the bonding, lattice dynamics, and phonon mode level information of these materials. Ultimately, it is determined that the synergistic effect of low group velocity due to weak bonding and strong phonon anharmonicity is the fundamental cause of the intrinsic low thermal conductivity in these Janus structures. Relative regular residual analysis further indicates that the four-phonon processes are limited in Pb2PAs and Pb2SbAs, and the three-phonon scattering is sufficient to describe their anharmonicity. In this study, the thermal transport properties of Janus Pb2PAs and Pb2SbAs monolayers are illuminated based on fundamental physical mechanisms, and the low lattice thermal conductivity endows them with the potential applications in the field of thermal barriers and thermoelectrics.
|
Received: 06 December 2023
Revised: 20 January 2024
Accepted manuscript online: 25 January 2024
|
PACS:
|
65.40.-b
|
(Thermal properties of crystalline solids)
|
|
63.20.kg
|
(Phonon-phonon interactions)
|
|
63.20.Ry
|
(Anharmonic lattice modes)
|
|
63.20.dk
|
(First-principles theory)
|
|
Fund: Project supported by the Youth Science and Technology Talent Project of Hunan Province of China (Grant No. 2022RC1197) and the National Natural Science Foundation of China (Grant No. 52372260). |
Corresponding Authors:
Zhunyun Tang, Tao Ouyang
E-mail: 202331520177@smail.xtu.edu.cn;ouyangtao@xtu.edu.cn
|
Cite this article:
Jiaxin Geng(耿嘉鑫), Pei Zhang(张培), Zhunyun Tang(汤准韵), and Tao Ouyang(欧阳滔) Phonon transport properties of Janus Pb2XAs(X = P, Sb, and Bi) monolayers: A DFT study 2024 Chin. Phys. B 33 046501
|
[1] Liu B, Liu Y, Zhu C, Xiang H, Chen H, Sun L, Gao Y and Zhou Y 2019 J. Mater. Sci. Technol. 35 833 [2] Padture N P, Gell M and Jordan E H 2002 Science 296 280 [3] Bell L E 2008 Science 321 1457 [4] Qin B, Wang D, Liu X, Qin Y, Dong J F, Luo J, Li J W, Liu W, Tan G, Tang X, Li J F, He J and Zhao L D 2021 Science 373 556 [5] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105 [6] Ouyang T, Jiang E, Tang C, Li J, He C and Zhong J 2018 J. Mater. Chem. A 6 21532 [7] Ouyang T and Hu M 2015 Phys. Rev. B 92 235204 [8] Wei D, Zhou E, Zheng X, Wang H, Shen C, Zhang H, Qin Z and Qin G 2022 NPJ Comput. Mater. 8 260 [9] Shahsavar A, Salimpour M R, Saghafian M and Shafii M B 2016 J. Mech. Sci. Technol. 30 809 [10] Ouyang T, Liu Q, Chen M, Tang C, Li J, Zhang C, He C, Bao H, Zhong J and Hu M 2019 ES Energy Environ. 3 88 [11] Tian Z, Garg J, Esfarjani K, Shiga T, Shiomi J and Chen G 2012 Phys. Rev. B 85 184303 [12] Hu M and Poulikakos D 2012 Nano Lett. 12 5487 [13] Tang Z, Wang X, Li J, He C, Chen M, Tang C and Ouyang T 2023 Phys. Rev. B 108 214304 [14] Skoug E J and Morelli D T 2011 Phys. Rev. Lett. 107 235901 [15] Schweika W, Hermann R P, Prager M, PerŞon J and Keppens V 2007 Phys. Rev. Lett. 99 125501 [16] Paschen S, Carrillo-Cabrera W, Bentien A, Tran V H, Baenitz M, Grin Y and Steglich F 2001 Phys. Rev. B 64 214404 [17] Lee S, Esfarjani K, Luo T, Zhou J, Tian Z and Chen G 2014 Nat. Commun. 5 3525 [18] Peng B, Zhang H, Shao H, Xu Y, Ni G, Zhang R and Zhu H 2016 Phys. Rev. B 94 245420 [19] Gu X, Wei Y, Yin X, Li B and Yang R 2018 Rev. Mod. Phys. 90 041002 [20] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S and Shi L 2010 Science 328 213 [21] Balandin A A 2011 Nat. Mater. 10 569 [22] Feng T, Lindsay L and Ruan X 2017 Phys. Rev. B 96 161201 [23] Sadeghi M M, Pettes M T and Shi L 2012 Solid State Commun. 152 1321 [24] Fan H, Wu H, Lindsay L and Hu Y 2019 Phys. Rev. B 100 085420 [25] Cai Q, Scullion D, Gan W, Falin A, Zhang S, Watanabe K, Taniguchi T, Chen Y, Santos E J G and Li L H 2019 Sci. Adv. 5 eaav0129 [26] Li W, Carrete J and Mingo N 2013 Appl. Phys. Lett. 103 253103 [27] Liu X, Zhang G, Pei Q X and Zhang Y W 2013 Appl. Phys. Lett. 103 133113 [28] Jiang J W, Park H S and Rabczuk T 2013 J. Appl. Phys. 114 064307 [29] Ashton M, Sinnott S B and Hennig R G 2016 Appl. Phys. Lett. 109 192103 [30] Özdamar B, Özbal G, cCi nar M N, Sevim K, Kurt G, Kaya B and Sevinçli H 2018 Phys. Rev. B 98 045431 [31] Li L, Wang W, Gong P, Zhu X, Deng B, Shi X, Gao G, Li H and Zhai T 2018 Adv. Mater. 30 1706771 [32] Barreteau C, Michon B, Besnard C and Giannini E 2016 J. Cryst. Growth 443 75 [33] Kim D, Park K, Lee J H, Kwon I S, Kwak I H and Park J 2021 Small 17 2006310 [34] Lee K, Kamali S, Ericsson T, Bellard M and Kovnir K 2016 Chem. Mater. 28 2776 [35] Cheng A Q, He Z, Zhao J, Zeng H and Chen R S 2018 ACS Appl. Mater. Interfaces 10 5133 [36] Chen Q Y, Huang F J, Ruan J Q, Ma T, Xiong K and He Y 2022 Phys. Rev. Mater. 6 104005 [37] Ozbey D H, Kilic M E and Durgun E 2022 Phys. Rev. Appl. 17 034043 [38] Huang B, Zhuang H L, Yoon M, Sumpter B G and Wei S H 2015 Phys. Rev. B 91 121401 [39] Somaiya R N, Sonvane Y A and Gupta S K 2020 Phys. Chem. Chem. Phys. 22 3990 [40] Niasadegh N, Naseri M and Rezaee S 2021 Opt. Quantum Electron. 53 502 [41] Huang H H, Fan X, Singh D J and Zheng W T 2019 J. Mater. Chem. C 7 10652 [42] Wu Y, Yang C H, Zhang H N, Zhu L H, Wang X Y, Li Y Q, Zhu S Y and Wang X C 2022 Appl. Surf. Sci. 589 152999 [43] He Q W, Wu Y, Yang C H, Zhang H N, Tang D S, Shang X and Wang X C 2023 Nanoscale 15 10458 [44] Liu H Y, Wang Y Y, Chen Z Y, Hou T P, Wu K M and Lin H F 2023 Phys. Chem. Chem. Phys. 25 16559 [45] Liu M Y, Gong L, He Y and Cao C 2021 Phys. Rev. B 104 035409 [46] Liu M Y, Gong L, He Y and Cao C 2021 Phys. Rev. B 103 075421 [47] Babaee Touski S and Ghobadi N 2021 Phys. Rev. B 103 165404 [48] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [49] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [50] Tadano T and Tsuneyuki S 2015 Phys. Rev. B 92 054301 [51] Tadano T, Gohda Y and Tsuneyuki S 2014 J. Phys.:Condens. Matter 26 225402 [52] Taheri A, Pisana S and Singh C V 2021 Phys. Rev. B 103 235426 [53] Zhou F, Nielson W, Xia Y and Ozolinš V 2019 Phys. Rev. B 100 184308 [54] Zhou F, Sadigh B, Aberg D, Xia Y and Ozolinš V 2019 Phys. Rev. B 100 184309 [55] Zhou F, Nielson W, Xia Y and Ozolinš V 2014 Phys. Rev. Lett. 113 185501 [56] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747 [57] Nika D L and Balandin A A 2017 Rep. Prog. Phys. 80 036502 [58] Yu L, Chen A, Wang X, Wang H, Qin Z and Qin G 2022 Phys. Rev. B 106 125410 [59] Tang Z, Wang X, Li J, He C, Chen M, Li X, Tang C and Ouyang T 2023 Appl. Phys. Lett. 123 102201 [60] Xie H, Hu M and Bao H 2014 Appl. Phys. Lett. 104 131906 [61] Wang X and Tabarraei A 2016 Appl. Phys. Lett. 108 191905 [62] Maintz S, Deringer V L, Tchougréeff A L and Dronskowski R 2016 J. Comput. Chem. 37 1030 [63] Feng Z, Fu Y, Zhang Y and Singh D J 2020 Phys. Rev. B 101 064301 [64] Mukhopadhyay S, Singh D J and Reinecke T L 2020 Chem. Mater. 32 8906 [65] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [66] Yue S Y, Qin G, Zhang X, Sheng X, Su G and Hu M 2017 Phys. Rev. B 95 085207 [67] Yue S Y, Zhang X, Qin G, Phillpot S R and Hu M 2017 Phys. Rev. B 95 195203 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|