Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 033101    DOI: 10.1088/1674-1056/ad123d
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain

Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙)
School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
Abstract  Alloy nanostructures supporting localized surface plasmon resonances has been widely used as efficient photocatalysts, but the microscopic mechanism of alloy compositions enhancing the catalytic efficiency is still unclear. By using time-dependent density functional theory (TDDFT), we analyze the real-time reaction processes of plasmon-mediated H2 splitting on linear Ag-Au alloy chains when exposed to femtosecond laser pulses. It is found that H2 splitting rate depends on the position and proportion of Au atoms in alloy chains, which indicates that specially designed Ag-Au alloy is more likely to induce the reaction than pure Ag chain. Especially, more electrons directly transfer from the alloy chain to the anti-bonding state of H2, thereby accelerating the H2 splitting reaction. These results establish a theoretical foundation for comprehending the microscopic mechanism of plasmon-induced chemical reaction on the alloy nanostructures.
Keywords:  plasmon      photocatalysis      time-dependent density functional theory (TDDFT)  
Received:  02 November 2023      Revised:  01 December 2023      Accepted manuscript online:  05 December 2023
PACS:  31.15.ee (Time-dependent density functional theory)  
  36.40.Sx (Diffusion and dynamics of clusters)  
  82.30.Hk (Chemical exchanges (substitution, atom transfer, abstraction, disproportionation, and group exchange))  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2020YFA0211300 and 2021YFA1201500), the National Natural Science Foundation of China (Grant Nos. U22A6005, 92150110, 12074237, and 12304426), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2024JC-JCQN-07), the Fundamental Science Foundation of Shaanxi Province, China (Grant No. 22JSZ010), and the Fundamental Research Funds for Central Universities (Grant Nos. GK202201012 and GK202308001).
Corresponding Authors:  Lei Yan, Zhenglong Zhang     E-mail:  yanlei@snnu.edu.cn;zlzhang@snnu.edu.cn

Cite this article: 

Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙) Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain 2024 Chin. Phys. B 33 033101

[1] Yan L, Ding Z, Song P, Wang F and Meng S 2015 Appl. Phys. Lett. 107 083102 [2] Valenti M, Venugopal A, Tordera D, Jonsson M P, Biskos G, Schmidt-Ott A and Smith W A 2017 ACS Photon. 4 1146 [3] Hu C, Chen X, Low J, Yang Y W, Li H, Wu D, Chen S, Jin J, Li H, Ju H, Wang C H, Lu Z, Long R, Song L and Xiong Y 2023 Nat. Commun. 14 221 [4] Wu S, Chen Y and Gao S 2022 Phys. Rev. Lett. 129 086801 [5] Zhai L, Gebre S T, Chen B, Xu D, Chen J, Li Z, Liu Y, Yang H, Ling C, Ge Y, Zhai W, Chen C, Ma L, Zhang Q, Li X, Yan Y, Huang X, Li L, Guan Z, Tao C L, Huang Z, Wang H, Liang J, Zhu Y, Lee C S, Wang P, Zhang C, Gu L, Du Y, Lian T, Zhang H and Wu X J 2023 Nat. Commun. 14 2538 [6] Zhang Y, Nelson T, Tretiak S, Guo H and Schatz G C 2018 ACS Nano 12 8415 [7] Kong T, Zhang C, Lu J, Kang B, Fu Z, Li J, Yan L, Zhang Z, Zheng H and Xu H 2021 Nanoscale 13 4585 [8] Zhang Y, He S, Guo W, Hu Y, Huang J, Mulcahy J R and Wei W D 2018 Chem. Rev. 118 2927 [9] Chu W, Tan S, Zheng Q, Fang W, Feng Y, Prezhdo O V, Wang B, Li X Z and Zhao J 2022 Sci. Adv. 8 eabo2675 [10] Kumar P V, Rossi T P, Marti-Dafcik D, Reichmuth D, Kuisma M, Erhart P, Puska M J and Norris D J 2019 ACS Nano 13 3188 [11] Wang S, Huang M, Wu Y N, Chu W, Zhao J, Walsh A, Gong X G, Wei S H and Chen S 2022 Nat. Comput. Sci. 2 486 [12] Foerster B, Joplin A, Kaefer K, Celiksoy S, Link S and Sonnichsen C 2017 ACS Nano 11 2886 [13] Gilroy K D, Ruditskiy A, Peng H C, Qin D and Xia Y 2016 Chem. Rev. 116 10414 [14] Mayer K M and Hafner J H 2011 Chem. Rev. 111 3828 [15] Johnson H M, Dasher A M, Monahan M, Seifert S and Moreau L M 2022 Nanoscale 14 4519 [16] Babu R S, Colenso H R, Gouws G J, AuguiB and Moore C P 2023 IEEE Sens. J. 23 10420 [17] Kamimura S, Yamashita S, Abe S, Tsubota T and Ohno T 2017 Appl. Catal. B 211 11 [18] Yue X, Hou J, Zhao H, Wu P, Guo Y, Shi Q, Chen L, Peng S, Liu Z and Cao G 2020 J. Energy Chem. 49 1 [19] Li S, Zhao J, Liu G, Xu L, Tian Y, Jiao A and Chen M 2021 Nanotechnology 32 125401 [20] Ramakrishna K, Cangi A, Dornheim T, Baczewski A and Vorberger J 2021 Phys. Rev. B 103 125118 [21] Weissker H C and Mottet C 2011 Phys. Rev. B 84 165443 [22] Tavernelli I, Röhrig U F and Rothlisberger U 2005 Mol. Phys. 103 963 [23] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997 [24] Theilhaber J 1992 Phys. Rev. B 46 12990 [25] Castro A 2013 Chem. Phys. Chem. 14 1488 [26] Yabana K and Bertsch G F 1996 Phys. Rev. B 54 4484 [27] Nazin G V, Qiu X H and Ho W 2003 Phys. Rev. Lett. 90 216110 [28] Michel P, Benz W and Richardson D C 2003 Nature 421 608 [29] Yan L, Wang F and Meng S 2016 ACS Nano 10 5452 [30] Zhang Y, Yan L, Guan M, Chen D, Xu Z, Guo H, Hu S, Zhang S, Liu X, Guo Z, Li S and Meng S 2022 Adv. Sci. 9 2102978 [31] Yan L, Xu J, Wang F and Meng S 2018 J. Phys. Chem. Lett. 9 63 [32] Wu K, Chen J, McBride J R and Lian T 2015 Science 349 632 [33] Yan J, Yuan Z and Gao S W 2007 Phys. Rev. Lett. 98 216602 [34] Yan J and Gao S 2008 Phys. Rev. B 78 235413
[1] Plasmon-induced nonlinear response on gold nanoclusters
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(4): 044204.
[2] Giant and controllable Goos—Hänchen shift of a reflective beam off a hyperbolic metasurface of polar crystals
Tian Xue(薛天), Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Xiang-Guang Wang(王相光), Qiang Zhang(张强), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), and Xuan-Zhang Wang(王选章). Chin. Phys. B, 2024, 33(1): 014207.
[3] Valley filtering and valley-polarized collective modes in bulk graphene monolayers
Jian-Long Zheng(郑建龙) and Feng Zhai(翟峰). Chin. Phys. B, 2024, 33(1): 017203.
[4] Enhanced and controllable reflected group delay based on Tamm surface plasmons with Dirac semimetals
Qiwen Zheng(郑棋文), Wenguang Lu(卢文广), Jiaqing Xu(胥加青),Yunyang Ye(叶云洋), Xinmin Zhao(赵新民), and Leyong Jiang(蒋乐勇). Chin. Phys. B, 2023, 32(7): 074208.
[5] Angle robust transmitted plasmonic colors with different surroundings utilizing localized surface plasmon resonance
Xufeng Gao(高旭峰), Qi Wang(王琦), Shijie Zhang(张世杰), Ruijin Hong(洪瑞金), and Dawei Zhang(张大伟). Chin. Phys. B, 2023, 32(7): 070204.
[6] Exploring plasmons weakly coupling to perovskite excitons with tunable emission by energy transfer
Guo-Dong Yan(严国栋), Zhen-Hua Zhang(张振华), Heng Guo(郭衡), Jin-Ping Chen(陈金平),Qing-Song Jiang(蒋青松), Qian-Nan Cui(崔乾楠), Zeng-Liang Shi(石增良), and Chun-Xiang Xu(徐春祥). Chin. Phys. B, 2023, 32(6): 067302.
[7] Simultaneous measurements of refractive index and temperature based on a no-core fiber coated with Ag and PDMS films
Yuxin Li(李宇昕), Hailiang Chen(陈海良), Yingyue Zhang(张赢月), Qiang Chen(陈强), Biao Wu(武彪),Xiaoya Fan(樊晓亚), Yingchao Liu(刘英超), and Mingjian Ma(马明建). Chin. Phys. B, 2023, 32(5): 054209.
[8] Numerical study on THz radiation of two-dimensional plasmon resonance of GaN HEMT array
Hongyang Guo(郭宏阳), Ping Zhang(张平), Shengpeng Yang(杨生鹏), Shaomeng Wang(王少萌), and Yubin Gong(宫玉彬). Chin. Phys. B, 2023, 32(4): 040701.
[9] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[10] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[11] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[12] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[13] Corrigendum to “Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED”
Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚). Chin. Phys. B, 2023, 32(12): 129901.
[14] Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED
Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚). Chin. Phys. B, 2023, 32(11): 114205.
[15] Active control of surface plasmon polaritons with phase change materials
Yuan-Zhen Qi(漆元臻), Qiao Jiang(蒋瞧), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(10): 104202.
No Suggested Reading articles found!