|
|
Core level excitation spectra of La and Mn ions in LaMnO3 |
Fujian Li(李福建), Xinlu Cheng(程新路), and Hong Zhang(张红)† |
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, Chin |
|
|
Abstract Manganese-based perovskite is popular for research on ferromagnetic materials, and its spectroscopic studies are essential for understanding its electronic structure, dielectric, electrical, and magnetic properties. In this paper, the M-edge spectra of La ions and the M-edge, L-edge, and K-edge spectra of Mn ions in LaMnO3 are calculated by considering both the free-ion multiplet calculation and the crystal field effects. We analyze spectral shapes, identify peak origins, and estimate the oxidation states of La and Mn ions in LaMnO3 theoretically. It is concluded that La ions in LaMnO3 predominantly exist in the trivalent state, while Mn ions exist primarily in the trivalent state with a minor presence of tetravalent ions. Furthermore, the calculated spectra are in better conformity with the experimental spectra when the proportion of Mn3+ is 90% and Mn4+ is 10%. This article enhances our comprehension of the oxidation states of La and Mn within the crystal and also provides a valuable guidance for spectroscopic investigations of other manganates.
|
Received: 28 June 2023
Revised: 14 September 2023
Accepted manuscript online: 19 September 2023
|
PACS:
|
32.30.Rj
|
(X-ray spectra)
|
|
61.05.cj
|
(X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)
|
|
78.70.Dm
|
(X-ray absorption spectra)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974253). |
Corresponding Authors:
Hong Zhang
E-mail: hongzhang@scu.edu.cn
|
Cite this article:
Fujian Li(李福建), Xinlu Cheng(程新路), and Hong Zhang(张红) Core level excitation spectra of La and Mn ions in LaMnO3 2024 Chin. Phys. B 33 033201
|
[1] Labhasetwar N, Saravanan G, Megarajan S K, Manwar N, Khobragade R, Doggali P and Grasset F 2015 Sci. Technol. Adv. Mater. 16 036002 [2] Tomar A K, Joshi A, Singh G and Sharma R K 2021 Coord. Chem. Rev. 431 213680 [3] Wang Y, Chen L, Cao H, Chi Z, Chen C, Duan X, Xie Y, Qi F, Song W and Liu J 2019 Appl. Catal. B 245 546 [4] Song L, Zhu Y, Yang Z, Wang C and Lu X 2018 J. Mater. Chem. B 6 5931 [5] El Hannani M D, Rached D, Rabah M, Khenata R, Benayad N, Hichour M and Bouhemadou A 2008 Mater. Sci. Semicond. Process. 11 81 [6] Mefford J T, Hardin W G, Dai S, Johnston K P and Stevenson K J 2014 Nat. Mater. 13 726 [7] Matsumoto G 1970 J. Phys. Soc. Jpn. 29 606 [8] Moritomo Y, Asamitsu A, Kuwahara H and Tokura Y 1996 Nature 380 141 [9] Gibert M, Zubko P, Scherwitzl R, Íñiguez J and Triscone J M 2012 Nat. Mater. 11 195 [10] Murakami Y, Hill J, Gibbs D, Blume M, Koyama I, Tanaka M, Kawata H, Arima T, Tokura Y and Hirota K 1998 Phys. Rev. Lett. 81 582 [11] Elfimov I S, Anisimov V I and Sawatzky G A 1999 Phys. Rev. Lett. 82 4264 [12] Li Y J, Haschaolu W, Wurentuya, Song Z Q, Ou Z Q, Tegus O and Ikuo N 2015 Chin. Phys. B 24 086101 [13] Ravindran P, Kjekshus A, Fjellvåg H, Delin A and Eriksson O 2002 Phys. Rev. B 65 064445 [14] Takahashi M, Igarashi J I and Fulde P 1999 J. Phys. Soc. Jpn. 68 2530 [15] Taguchi M and Altarellli M 2002 Surf. Rev. Lett. 9 1167 [16] Pinjari R V, Delcey M G, Guo M Y, Odelius M and Lundberg M 2014 J. Chem. Phys. 141 124116 [17] Stavitski E and De Groot F M 2010 Micron 41 687 [18] de Groot F M, Elnaggar H, Frati F, Wang R P, Delgado-Jaime M U, van Veenendaal M, Fernandez-Rodriguez J, Haverkort M W, Green R J and van der Laan G 2021 J. Electron Spectrosc. Relat. Phenom. 249 147061 [19] Zhang C, Wang C, Zhan W, Guo Y, Guo Y, Lu G, Baylet A and Giroir-Fendler A 2013 Appl. Catal. B 129 509 [20] Elsiddig Z A, Xu H, Wang D, Zhang W, Guo X, Zhang Y, Sun Z and Chen J 2017 Electrochim. Acta 253 422 [21] Huang J, Teng Z, Kang R, Bin F, Wei X, Hao Q, Hui K N, Hui K S and Dou B 2021 Fuel 292 120289 [22] Mastelaro V R, de Souza D P and Mesquita R A 2002 X-Ray Spectrom. 31 154 [23] Sun Q, Luo X, Xia Q, Guo Y, Su J, Li Q and Miao G 2020 J. Magn. Magn. Mater. 499 166317 [24] Tao Y M, Lin L, Dong S and Liu J M 2012 Chin. Phys. B 21 107502 [25] Horyn R, Sikora A and Bukowska E 2003 J. Alloys Compd. 353 153 [26] Abu-Samak M, Kumar U, Quraishi A, Kumar R, Kumar S, Dalela S, Ahmad M A, Choudhary B and Alvi P 2022 Physica B 628 413562 [27] Pandey S, Bindu R, Kumar A, Khalid S and Pimpale A 2008 Pramana 70 359 [28] Borca C N, Canulescu S, Loviat F, Lippert T, Grolimund D, Dobeli M, Wambach J and Wokaun A 2007 Appl. Surf. Sci. 254 1352 [29] Delcey M G, Lindblad R, Timm M, Bulow C, Zamudio-Bayer V, von Issendorff B, Lau J T and Lundberg M 2022 Phys. Chem. Chem. Phys. 24 3598 [30] Varela M, Oxley M P, Luo W, Tao J, Watanabe M, Lupini A R, Pantelides S T and Pennycook S J 2009 Phys. Rev. B 79 085117 [31] Nishida S, Kobayashi S, Kumamoto A, Ikeno H, Mizoguchi T, Tanaka I, Ikuhara Y and Yamamoto T 2013 J. Appl. Phys. 114 054906 [32] Saitoh T, Bocquet A E, Mizokawa T, Namatame H, Fujimori A, Abbate M, Takeda Y and Takano M 1995 Phys. Rev. B 51 13942 [33] Cho D Y, Kim J Y, Park B G, Rho K J, Park J H, Noh H J, Kim B, Oh S J, Park H M and Ahn J S 2007 Phys. Rev. Lett. 98 217601 [34] Stranick M A 1999 Surf. Sci. Spectra (USA) 6 39 [35] Flores-Lasluisa J X, Huerta E, Cazorla-Amoros D and Moralion E 2022 Energy 247 123456 [36] Gu M F 2008 Can. J. Phys. 86 675 [37] Popovic Z and Satpathy S 2000 Phys. Rev. Lett. 84 1603 [38] Jahn H A and Teller E 1937 Proc. R. Soc. Lond. A-Math. Phys. Sci. 161 220 [39] Oku M, Hirokawa K and Ikeda S 1975 J. Electron Spectrosc. Relat. Phenom. 7 465 [40] Li Y, Guan B, Maclennan A, Hu Y, Li D, Zhao J, Wang Y and Zhang H 2017 Electrochim. Acta 241 395 [41] Bethe H 1929 Ann. Phys. 395 133 [42] Degroot F M F, Fuggle J C, Thole B T and Sawatzky G A 1990 Phys. Rev. B 42 5459 [43] Sen Gupta S, Bradley J A, Haverkort M W, Seidler G T, Tanaka A and Sawatzky G A 2011 Phys. Rev. B 84 075134 [44] Ruotsalainen K O, Sahle C J, Ritschel T, Geck J, Hosoda M, Bell C, Hikita Y, Hwang H Y, Fister T T, Gordon R A, Hamalainen K, Hakala M and Huotari S 2015 J. Phys. Condens. Matter 27 335501 [45] Zhao L Z and Young V 1984 J. Electron Spectrosc. Relat. Phenom. 34 45 [46] Bocquet A E, Fujimori A, Mizokawa T, Saitoh T, Namatame H, Suga S, Kimizuka N, Takeda Y and Takano M 1992 Phys. Rev. B 45 1561 [47] Zhao C, Zhang H and Cheng X 2022 J. Solid State Chem. 311 123145 [48] Ma P, Lei N, Yu B, Liu Y, Jiang G, Dai J, Li S and Lu Q 2019 Nanomaterials 9 1676 [49] Kucharczyk B and Tylus W 2007 Catal. Lett. 115 122 [50] Morales F, de Groot F M F, Glatzel P, Kleimenov E, Bluhm H, Havecker M, Knop-Gericke A and Weckhuysen B M 2004 J. Phys. Chem. B 108 16201 [51] Oishi M, Yamanaka K, Watanabe I, Shimoda K, Matsunaga T, Arai H, Ukyo Y, Uchimoto Y, Ogumi Z and Ohta T 2016 J. Mater. Chem. A 4 9293 [52] Lafuerza S, García J, Subías G, Blasco J and Glatzel P 2016 Phys. Rev. B 93 205108 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|