ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Engineering the spectra of photon triplets generated from micro/nanofiber |
Chuan Qu(瞿川), Dongqin Guo(郭东琴), Xiaoxiao Li(李笑笑), Zhenqi Liu(刘振旗), Yi Zhao(赵义),Shenghai Zhang(张胜海), and Zhengtong Wei(卫正统)† |
The College of Basic Department, Information Engineering University, Zhengzhou 450000, China |
|
|
Abstract Quantum light sources are the core resources for photonics-based quantum information processing. We investigate the spectral engineering of photon triplets generated by third-order spontaneous parametric down-conversion in micro/nanofiber. The phase mismatching at one-third pump frequency gives rise to non-degenerate photon triplets, the joint spectral intensity of which has an elliptical locus with a fixed eccentricity of √6/3. Therefore, we propose a frequency-division scheme to separate non-degenerate photon triplets into three channels with high heralding efficiency for the first time. Choosing an appropriate pump wavelength can compensate for the fabrication errors of micro/nanofiber and also generate narrowband, non-degenerate photon triplet sources with a high signal-to-noise ratio. Furthermore, the long-period micro/nanofiber grating introduces a new controllable degree of freedom to tailor phase matching, resulting from the periodic oscillation of dispersion. In this scheme, the wavelength of photon triplets can be flexibly tuned using quasi-phase matching. We study the generation of photon triplets from this novel perspective of spectrum engineering, and we believe that this work will accelerate the practical implementation of photon triplets in quantum information processing.
|
Received: 23 November 2023
Revised: 08 January 2024
Accepted manuscript online: 09 January 2024
|
PACS:
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
42.65.Lm
|
(Parametric down conversion and production of entangled photons)
|
|
42.81.-i
|
(Fiber optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61605249) and the Science and Technology Key Project of Henan Province of China (Grant Nos. 182102210577 and 232102211086). |
Corresponding Authors:
Zhengtong Wei
E-mail: weizhengtong1987@126.com
|
Cite this article:
Chuan Qu(瞿川), Dongqin Guo(郭东琴), Xiaoxiao Li(李笑笑), Zhenqi Liu(刘振旗), Yi Zhao(赵义), Shenghai Zhang(张胜海), and Zhengtong Wei(卫正统) Engineering the spectra of photon triplets generated from micro/nanofiber 2024 Chin. Phys. B 33 034208
|
[1] Walmsley I A and Raymer M G 2005 Science 307 1733 [2] Deng Y H, Gu Y C, Liu H L, Gong S Q, Su H, Zhang Z J, Tang H Y, Jia M H, Xu J M, Chen M C, Qin J, Peng L C, Yan J, Hu Y, Huang J, Li H, Li Y, Chen Y, Jiang X, Gan L, Yang G, You L, Li L, Zhong H S, Wang H, Liu N L, Renema J J, Lu C Y and Pan J W 2023 Phys. Rev. Lett. 131 150601 [3] Valivarthi R, Puigibert M G, Zhou Q, Aguilar G H, Verma V B, Marsili F, Shaw M D, Nam S W, Oblak D and Tittel W 2016 Nat. Photonics 10 676 [4] Yin H L, Chen T Y, Yu Z W, Liu H, You L, Zhou Y, Chen S, Mao Y, Huang M Q, Zhang W J, Chen H, Li M J, Nolan D, Zhou F, Jiang X, Wang Z, Zhang Q, Wang X B and Pan J W 2016 Phys. Rev. Lett. 117 190501 [5] Qin J, Deng Y H, Zhong H S, Peng L C, Su H, Luo Y H, Xu J M, Wu D, Gong S Q, Liu H L, Wang H, Chen M C, Li L, Liu N L, Lu C Y and Pan J W 2023 Phys. Rev. Lett. 130 070801 [6] Shukhin A A, Keloth J, Hakuta K and Kalachev A A 2020 Phys. Rev. A 101 053822 [7] Kim J H, Ihn Y S, Kim Y H and Shin H 2019 Opt. Lett. 44 447 [8] Fang B, Menotti M, Liscidini M, Sipe J E and Lorenz V O 2019 Phys. Rev. Lett. 123 070508 [9] Anwar A, Perumangatt C, Steinlechner F, Jennewein T and Ling A 2021 Rev. Sci. Instrum. 92 041101 [10] Garay-Palmett K, Kim D B, Zhang Y, Domínguez-Serna F A, OLorenz V and U'Ren A B 2023 J. Opt. Soc. Am. B 40 469 [11] Niu X L, Gong Y X, Zou X B, Huang Y F and Guo G 2009 J. Mod. Opt. 56 936 [12] Shalm L K, Hamel D R, Yan Z, Simon C, Resch K J and Jennewein T 2012 Nat. Phys. 9 19 [13] Hübel H, Hamel D R, Fedrizzi A, Ramelow S, Resch K J and Jennewein T 2010 Nature 466 601 [14] Khoshnegar M, Huber T, Predojević A, Dalacu D, Prilmüller M, Lapointe J, Wu X, Tamarat P, Lounis B, Poole P J, Weihs G and Majedi H 2017 Nat. Commun. 8 15716 [15] Corona M, Garay-Palmett K and U'Ren A B 2011 Phys. Rev. A 84 033823 [16] Hammer J, Cavanna A, Pennetta R, Chekhova M V, Russell P S J and Joly N Y 2018 Opt. Lett. 43 2320 [17] Moebius M G, Herrera F, Griesse-Nascimento S, Reshef O, Evans C C, Guerreschi G G, Aspuru-Guzik A and Mazur E 2016 Opt. Express 24 9932 [18] Zhang D, Cai Y, Zheng Z, Barral D, Zhang Y, Xiao M and Bencheikh K 2021 Phys. Rev. A 103 013704 [19] González E A R, Borne A, Boulanger B, Levenson J A and Bencheikh K 2018 Phys. Rev. Lett. 120 043601 [20] Cavanna A, Hammer J, Okoth C, Ortiz-Ricardo E, Cruz-Ramirez H, Garay-Palmett K, U' Ren A B, Frosz M H, Jiang X, Joly N Y and Chekhova M V 2020 Phys. Rev. A 101 033840 [21] Tong L, Zi F, Guo X and Lou J 2012 Opt. Commun. 285 4641 [22] Agrawal G 2013 Nonlinear Fiber Optics 5th edn. (Academic Press) [23] Xu Y, Fang W and Tong L 2017 Optics Express 25 10434 [24] Kang Y, Gong J, Xu Y, Yao N, Fang W, Guo X and Tong L 2020 IEEE Photon. Technol. Lett. 32 219 [25] Warren-Smith S C, Chemnitz M, Schneidewind H, Kostecki R, Ebendorff-Heidepriem H, Monro T M and Schmidt M A 2017 Opt. Lett. 42 1812 [26] Hao Z, Jiang B, Ma Y, Yi R, Jin H, Huang L, Gan X and Zhao J 2023 Phys. Rev. Appl. 19 L031002 [27] Jiang X, Zhang D, Lee T and Brambilla G 2018 Opt. Lett. 43 2728 [28] Saleh M F 2018 Phys. Rev. A 97 013850 [29] Jiang X, Lee T, He J, Khudus M I M A and Brambilla G 2017 Opt. Express 25 22626 [30] Tarnowski K, Kibler B, Finot C and Urbanczyk W 2011 IEEE J. Quantum Electron. 47 622 [31] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) [32] Amiri I S, Rashed A N Z and Yupapin P P 2020 J. Opt. Commun. 2019 0187 [33] Savin S V, Digonnet M J F, Kino G S and Shaw H J 2000 Opt. Lett. 25 710 [34] Torres-Gómez I, Ceballos-Herrera D E and Salas-Alcantara K M 2020 Sensors 20 622 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|