Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 034215    DOI: 10.1088/1674-1056/ad0117
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-efficiency ultra-fast all-optical photonic crystal diode based on the lateral-coupled nonlinear elliptical defect

Daxing Li(李大星)1,2,3, Kaizhu Liu(刘凯柱)4, Chunlong Yu(余春龙)1,2,3, Kuo Zhang(张括)1,2,3, Yueqin Liu(刘跃钦)1,2,3, and Shuai Feng(冯帅)1,2,3,†
1 School of Science, Minzu University of China, Beijing 100081, China;
2 Optoelectronics Research Center, Minzu University of China, Beijing 100081, China;
3 Engineering Research Center of Photonic Design Software, Ministry of Education, Beijing 100081, China;
4 School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
Abstract  An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed. The asymmetric micro-cavity is constructed by removing one rod and changing the shape of the lateral rod from a circle to an ellipse. A reflecting pillar is also introduced into the waveguide to construct an F-P cavity with the elliptical defect and enhance the asymmetric transmission for the incident light wave transmitting rightwards and leftwards, respectively. By designing the size of the ellipse and optimizing a reflecting rod at a suitable position, a maximum forward light transmittance of -1.14 dB and a minimum backward transmittance of -57.66 dB are achieved at the working wavelength of 1550.47 nm. The corresponding response time is about 10 ps when the intensity of the pump light beam resonant at 637 nm is 3.97 W/μm2.
Keywords:  photonic crystal      all-optical diode      Fano cavity      unidirectional transmission  
Received:  01 August 2023      Revised:  24 September 2023      Accepted manuscript online:  07 October 2023
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274478 and 61775244) and the National Key Research and Development Program of China (Grant Nos. 2021YFB2800604 and 2021YFB2800302).
Corresponding Authors:  Shuai Feng     E-mail:  fengshuai75@163.com

Cite this article: 

Daxing Li(李大星), Kaizhu Liu(刘凯柱), Chunlong Yu(余春龙), Kuo Zhang(张括),Yueqin Liu(刘跃钦), and Shuai Feng(冯帅) High-efficiency ultra-fast all-optical photonic crystal diode based on the lateral-coupled nonlinear elliptical defect 2024 Chin. Phys. B 33 034215

[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Yablonovitch E, Gmitter T J and Leung K M 1991 Phys. Rev. Lett. 67 2295
[4] Yoel F 1998 Science. 282 1679
[5] Chen B, Li S, Tang T T, Liu C L, Chen H, Li Y D, Huang L and Liu G Z 2011 J. Light. Technol. 29 1975
[6] Wu F, Lu G, Guo Z W, Jiang H T, Xue C H, Zheng M J, Chen C X, Du G Q and Chen H 2018 Phy. Rev. Appl. 10 064022
[7] Wu F, Liu T T and Xiao S Y 2023 Appl. Opt. 62 706
[8] Vujic D and John S 2005 Phys. Rev. Appl. 72 013807
[9] Nozaki K, Shinya A, Matsuo S, Sato T, Kuramochi E and Notomi M 2013 Opt. Express. 21 11877
[10] Zhou J W, Liang J Q, Liang Z Z, Tian C, Qin Y X and Wang W B 2013 Acta. Phys. Sin. 62 134208 (in Chinese)
[11] Chai Z, Hu X Y and Gong Q H 2013 J. Opt. 15 085001
[12] Wang H, Tang G, He Y, Wang Z, Li X, Sun L, Zhang Y, Yuan L, Dong J and Su Y 2022 Appl. Opt. 11 292
[13] Liu K Z, Fan H R, Feng S, Guo H L and Li C B 2019 Chin. Phys. Lett. 40 020501
[14] Jia W, Deng J, Wu H and Li X 2011 Opt. Lett. 36 4077
[15] Din Chai Tee, Kambayashi T, Sandoghchi S R, Tamchek N and Adikan F R M 2012 J. Lightwave Technol. 30 2818
[16] Scalora M, Dowling J P, Bowden C M and Bloemer M J 1994 J. Appl. Phys. 76 2023
[17] Bulgakov E N and Sadreev A F 2014 Opt. Lett. 39 1787
[18] Liu B, Liu Y F, Li S J and He X D 2016 Opt. Commun. 368 7
[19] Sato T, Fujisawa T and Saitoh K 2017 Opt. Soc. Am. B 34 2493
[20] Feng S, Ren C, Wang W and Wang Y 2012 Europhys. Lett. 97 64001
[21] Gallo K, Assanto G, Parameswaran K R and Fejer M M 2001 Appl. Phys. Lett. 79 314
[22] Xie J Y, Hu X Y, Wang F F, Ao Y T, Gao W, Yang H and Gong Q H 2018 J. Opt. 20 034004
[23] Fan C, Shi F, Wu H and Chen Y 2015 Opt. Lett. 40 2449
[24] Cai Z, Shen T, Zhang W and Zheng J 2021 Opt. Commun. 484 126675
[25] Xue C, Jiang H and Chen H 2010 Opt. Express 18 7479
[26] Chen Y, Xu G, Ding Y, Fang Y, Wu X, Wang J and Sun Y 2021 Opt. Mater. Express 11 3275
[27] Fan H, Liu K, Hong X, Feng S, Li C and Guo H 2020 Appl. Opt. 59 4499
[28] Puthiya Purayil N, Kakekochi V, Dalimba U K and Keloth C 2022 ACS Appl. Electron. Mater. 4 138
[29] Chen Z, Li Z and Li B 2006 Opt. Express 14 2671
[30] Liu Y, Qin F, Meng Z M, Zhou F, Mao Q H and Li Z Y 2011 Opt. Express 19 1945
[31] Geerthana S, Syedakbar S, Sridarshini T, Balaji V R, Sitharthan R and Shanmuga Sundar D 2022 Laser Phys. 32 106201
[32] Xu S, Sun Z Z, Wang K, Xiang L, Bao Z, Zhu Z, Shen F, Song Z, Zhang P, Ren W, Zhang X, Dong H, Deng J, Chen J, Wu Y, Tan Z, Gao Y, Jin F, Zhu X, Zhang C, Wang N, Zou Y, Zhong J, Zhang A, Li W, Jiang W, Yu L W, Yao Y, Wang Z, Li H, Guo Q, Song C, Wang H and Deng D L 2023 Chin. Phys. Lett. 40 060301
[33] Espindola R P, Udo M K and Ho S T 1995 Opt. Commun. 119 682
[34] Mobini E, Espinosa D H G, Vyas K and Dolgaleva K 2022 Micromachines. 13 991
[1] Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐). Chin. Phys. B, 2024, 33(4): 044203.
[2] Generation of hyperentangled photon pairs based on lithium niobate waveguide
Yang-He Chen(陈洋河), Zhen Jiang(姜震), and Guang-Qiang He(何广强). Chin. Phys. B, 2023, 32(9): 090306.
[3] High-performance chiral all-optical OR logic gate based on topological edge states of valley photonic crystal
Xiaorong Wang(王晓蓉), Hongming Fei(费宏明), Han Lin(林瀚), Min Wu(武敏), Lijuan Kang(康丽娟), Mingda Zhang(张明达), Xin Liu(刘欣), Yibiao Yang(杨毅彪), and Liantuan Xiao(肖连团). Chin. Phys. B, 2023, 32(7): 074205.
[4] Dynamic light storage based on controllable electromagnetically induced transparency effect
Liu-Ying Zeng(曾柳莹), Jun-Fang Wu(吴俊芳), and Chao Li(李潮). Chin. Phys. B, 2023, 32(6): 064213.
[5] Size effect on light propagation modulation near band edges in one-dimensional periodic structures
Yang Tang(唐洋), Jiajun Wang(王佳俊), Xingqi Zhao(赵星棋), Tongyu Li(李同宇), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(5): 054201.
[6] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[7] Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
Yi-Han Wang(王奕涵) and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044207.
[8] Spontaneous emission from Λ-type three-level atom driven by bichromatic field in anisotropic double-band photonic crystals
Kai Ling(凌凯), Li Jiang(姜丽), Ren-Gang Wan(万仁刚), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2023, 32(4): 044211.
[9] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[10] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[11] Tailoring topological corner states in photonic crystals by near- and far-field coupling effects
Zhao-Jian Zhang(张兆健), Zhi-Hao Lan(兰智豪), Huan Chen(陈欢), Yang Yu(于洋), and Jun-Bo Yang(杨俊波). Chin. Phys. B, 2023, 32(12): 124201.
[12] Compact generation scheme of path-frequency hyperentangled photons using 2D periodical nonlinear photonic crystal
Yang-He Chen(陈洋河), Bo Ji(季波), Nian-Qin Li(李念芹), Zhen Jiang(姜震), Wei Li(李维),Yu-Dong Li(李昱东), Liang-Sen Feng(冯梁森), Teng-Fei Wu(武腾飞), and Guang-Qiang He(何广强). Chin. Phys. B, 2023, 32(12): 120307.
[13] Topological resonators based on hexagonal-star valley photonic crystals
Xin Wan(万鑫), Chenyang Peng(彭晨阳), Gang Li(李港), Junhao Yang(杨俊豪), and Xinyuan Qi(齐新元). Chin. Phys. B, 2023, 32(11): 114208.
[14] Design of a photonic crystal fiber polarization beam splitter with simple structure and ultra-wide bandwidth
Yun-Peng Wei(魏云鹏), Jin-Hui Yuan(苑金辉), Yu-Wei Qu(屈玉玮), Shi Qiu(邱石), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2023, 32(10): 104210.
[15] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
No Suggested Reading articles found!