ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
On the generation of high-quality Nyquist pulses in mode-locked fiber lasers |
Yuxuan Ren(任俞宣)1,†, Jinman Ge(葛锦蔓)2,†, Xiaojun Li(李小军)2, Junsong Peng(彭俊松)1,‡, and Heping Zeng(曾和平)1,3,4 |
1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China; 2 National Key Laboratory of Science and Technology on Space Microwave, China Aerospace Science and Technology, Xi'an 710100, China; 3 Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China; 4 Jinan Institute of Quantum Technology, Jinan 250101, China |
|
|
Abstract Nyquist pulses have wide applications in many areas, from electronics to optics. Mode-locked lasers are ideal platforms to generate such pulses. However, how to generate high-quality Nyquist pulses in mode-locked lasers remains elusive. We address this problem by managing different physical effects in mode-locked fiber lasers through extensive numerical simulations. We find that net dispersion, linear loss, gain and filter shaping can affect the quality of Nyquist pulses significantly. We also demonstrate that Nyquist pulses experience similariton shaping due to the nonlinear attractor effect in the gain medium. Our work may contribute to the design of Nyquist pulse sources and enrich the understanding of pulse shaping dynamics in mode-locked lasers.
|
Received: 12 July 2023
Revised: 04 September 2023
Accepted manuscript online: 18 September 2023
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11621404, 11561121003, 11727812, 61775059, 12074122, 62022033, and 11704123), Shanghai Rising-Star Program, the Sustainedly Supported Foundation by the National Key Laboratory of Science and Technology on Space Microwave (Grant No. HTKT2022KL504008), Shanghai Natural Science Foundation (Grant No. 23ZR1419000), and the National Key Laboratory Foundation of China (Grant No. 6142411196307). |
Corresponding Authors:
Junsong Peng
E-mail: jspeng@lps.ecnu.edu.cn
|
Cite this article:
Yuxuan Ren(任俞宣), Jinman Ge(葛锦蔓), Xiaojun Li(李小军), Junsong Peng(彭俊松), and Heping Zeng(曾和平) On the generation of high-quality Nyquist pulses in mode-locked fiber lasers 2024 Chin. Phys. B 33 034210
|
[1] Nyquist H 1928 Transactions of the American Institute of Electrical Engineers 47 617 [2] Yue L, Kong D, Li Y and Wu J 2019 IEEE Photon. J. 11 7203908 [3] Choi J, Kim J, Cho J H and Lehnert J S 2021 IEEE International Conference on Communications, 14-23 June, 2021, pp. 1-6 [4] Dien N V, Tuan N V, Mai L T P, Hieu N V, Phuoc V Q, Quynh N Q N and Hung N T 2022 Computer Networks 204 108697 [5] Bosco G, Carena A, Curri V, Poggiolini P and Forghieri F 2010 IEEE Photon. Technol. Lett. 22 1129 [6] Bosco G 2016 Enabling Technologies for High Spectral - Efficiency Coherent Optical Communication Networks pp. 123-156 [7] Alishahi F, Fallahpour A, Mohajerin-Ariaei A, Cao Y, Kordts A, Pfeiffer M H P, Karpov M, Almaiman A, Liao P, Zou K, Liu C, Willner A N, Tur M, Kippenberg T J and Willner A E 2019 Opt. Lett. 44 1852 [8] Misra A, Kress C, Singh K, Meier J, Schwabe T, Preussler S, Scheytt J C and Schneider T 2022 Opt. Express 30 13776 [9] Hirooka T, Ruan P, Guan P and Nakazawa M 2012 Opt. Express 20 15001 [10] Châelain B, Laperle C, Roberts K, Chagnon M, Xu X, Borowiec A, Gagnon F and Plant D V 2012 Opt. Express 20 8397 [11] Harako K, Seya D, Suzuki D, Hirooka T and Nakazawa M 2015 Opt. Express 23 30801 [12] Nakazawa M, Hirooka T, Ruan P and Guan P 2012 Opt. Express 20 1129 [13] Nakazawa M and Hirooka T 2021 IEEE J. Quantum Electron. 57 1300320 [14] Misra A, Singh K, Meier J, Kress C, Schwabe T, Preussler S, Scheytt J C and Schneider T 2022 Conference on Lasers and Electro-Optics (CLEO), 15-20, May 2022, p. 1-2 [15] Yue L, Li Y, Qiu J, Hong X, Guo H, Zuo Y and Wu J 2020 Opt. Commun. 455 124362 [16] Yoshida M, Kimura K, Iwaya T, Kasai K, Hirooka T and Nakazawa M 2019 Opt. Express 27 28952 [17] Soto M A, Alem M, Amin Shoaie M, Vedadi A, Brés C S, Thévenaz L and Schneider T 2013 Nat. Commun. 4 2898 [18] Nakazawa M, Yoshida M and Hirooka T 2014 Optica 1 15 [19] Boscolo S, Finot C and Turitsyn S K 2015 IEEE Photon. J. 7 7802008 [20] Michael Yang S M 2019 Modern Digital Radio Communication Signals and Systems, (Cham: Springer International Publishing), pp. 113-154 [21] Xue X, Grelu P, Yang B, Wang M, Li S, Zheng X and Zhou B 2023 Light: Science & Applications 12 19 [22] Schmogrow R, Hillerkuss D, Wolf S, Bäuerle B, Winter M, Kleinow P, Nebendahl B, Dippon T, Schindler P C, Koos C, Freude W and Leuthold J 2012 Opt. Express 20 6439 [23] Keller U 2003 Nature 424 831 [24] Han Y, Guo Y, Gao B, Ma C, Zhang R and Zhang H 2020 Progress in Quantum Electronics 71 100264 [25] Ma C, Wang C, Gao B, Adams J, Wu G and Zhang H 2019 Appl. Phys. Rev. 6 041304 [26] Li Y Y, Gao B, Ma C Y, Wu G, Huo J Y, Han Y, Wageh S, Al-Hartomy O A, Al-Sehemi A G, Liu L and Zhang H 2023 Laser & Photon. Rev. 17 2200596 [27] Grelu P and Akhmediev N 2012 Nat. Photon. 6 84 [28] Peng J and Zeng H 2019 Phys. Rev. Appl. 11 044068 [29] Agrawal G P 2007 Nonlinear Fiber Optics (Academic press) [30] Oktem B, Ulgudur C and Ilday F O 2010 Nat. Photon. 4 307 [31] Peng J, Zhan L, Gu Z, Qian K, Luo S and Shen Q 2012 Phys. Rev. A 86 033808 [32] Dudley J M, Finot C, Richardson D J and Millot G 2007 Nat. Phys. 3 597 [33] Billet C, Dudley J M, Joly N and Knight J C 2005 Opt. Express 13 3236 [34] Ilday F O, Buckley J R, Clark W G and Wise F W 2004 Phys. Rev. Lett. 92 2139021 [35] Fermann M E, Kruglov V I, Thomsen B C, Dudley J M and Harvey J D 2000 Phys. Rev. Lett. 84 6010 [36] Sidorenko P, Fu W and Wise F 2019 Optica 6 1328 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|