Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020306    DOI: 10.1088/1674-1056/ad0bef
GENERAL Prev   Next  

Quantum synchronization with correlated baths

Lei Li(李磊)1,2,†, Chun-Hui Wang(王春辉)1, Hong-Hao Yin(尹洪浩)2, Ru-Quan Wang(王如泉)2,‡, and Wu-Ming Liu(刘伍明)2,§
1 School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We study quantum synchronization under the nonequilibrium reservoirs. We consider a two-qubit XXZ chain coupled independently to their own reservoirs modeled by the collisional model. Two reservoir particles, initially prepared in a thermal state or a state with coherence, are correlated through a unitary transformation and afterward interact locally with the two quantum subsystems. We study the quantum effect of reservoir on synchronous dynamics of system. By preparing different reservoir initial states or manipulating the reservoir particles coupling and the temperature gradient, we find that quantum entanglement of reservoir is the key to control quantum synchronization of system qubits.
Keywords:  quantum synchronization      entanglement      quantum coherence      nonequilibrium reservoir  
Received:  18 July 2023      Revised:  08 November 2023      Accepted manuscript online:  13 November 2023
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12147174 and 61835013) and the National Key Research and Development Program of China (Grant Nos. 2021YFA1400900, 2021YFA0718300, and 2021YFA1400243).
Corresponding Authors:  Lei Li, Ru-Quan Wang, Wu-Ming Liu     E-mail:  lilei@imu.edu.cn;ruquanwang@iphy.ac.cn;wmliu@iphy.ac.cn

Cite this article: 

Lei Li(李磊), Chun-Hui Wang(王春辉), Hong-Hao Yin(尹洪浩), Ru-Quan Wang(王如泉), and Wu-Ming Liu(刘伍明) Quantum synchronization with correlated baths 2024 Chin. Phys. B 33 020306

[1] Pikovsky A, Rosenblum M G and Kurths J 2001 Synchronization, A Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press)
[2] Osipov G V, Kurths J and Zhou C 2007 Synchronization in Oscillatory Networks (Berlin: Springer)
[3] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C 2008 Phys. Rep. 469 93
[4] Galve F, Giorgi G L and Zambrini R 2017 Quantum correlations and synchronization measures (Cham: Springer) pp. 393-420
[5] Orth P P, Roosen D, Hofstetter W and Hur K L 2010 Phys. Rev. B 82 144423
[6] Giorgi G L, Galve F, Manzano G, Colet P and Zambrini R 2012 Phys. Rev. A 85 052101
[7] Ludwig M and Marquardt F 2013 Phys. Rev. Lett. 111 073603
[8] Mari A, Farace A, Didier N, Giovannetti V and Fazio R 2013 Phys. Rev. Lett. 111 103605
[9] Manzano G, Galve F, Giorgi G L, Hernández-García E and Zambrini R 2013 Sci. Rep. 3 1439
[10] Xu M, Tieri D, Fine E, Thompson J K and Holland M 2014 Phys. Rev. Lett. 113 154101
[11] Hush M R, Li W, Genway S, Lesanovsky I and Armour A D 2015 Phys. Rev. A 91 061401
[12] Bellomo B, Giorgi G L, Palma G M and Zambrini R 2017 Phys. Rev. A 95 043807
[13] Roulet A and Bruder C 2018 Phys. Rev. Lett. 121 063601
[14] Cabot A, Galve F, Eguíluz V M, Klemm K, Maniscalco S and Zambrini R 2018 npj Quantum Inf. 4 57
[15] Cabot A, Giorgi G L, Galve F and Zambrini R 2019 Phys. Rev. Lett. 123 023604
[16] Karpat G, Yalçmkaya İ and Çakmak B 2019 Phys. Rev. A 100 012133
[17] Es'haqi-Sani N, Manzano G, Zambrini R and Fazio R 2020 Phys. Rev. Res. 2 023101
[18] Karpat G, Yalçinkaya İ and Çakmak B 2020 Phys. Rev. A 101 042121
[19] Karpat G, Yalçinkaya İ, Çakmak B, Giorgi G L and Zambrini R 2021 Phys. Rev. A 103 062217
[20] Goychuk I, Casado-Pascual J, Morillo M, Lehmann J and Hänggi P 2006 Phys. Rev. Lett. 97 210601
[21] Zhirov O V and Shepelyansky D L 2008 Phys. Rev. Lett. 100 014101
[22] Zhirov O V and Shepelyansky D L 2009 Phys. Rev. B 80 014519
[23] Lee T E and Sadeghpour H R 2013 Phys. Rev. Lett. 111 234101
[24] Walter S, Nunnenkamp A and Bruder C 2014 Phys. Rev. Lett. 112 094102
[25] Sonar S, Hajdušek M, Mukherjee M, Fazio R, Vedral V, Vinjanampathy S and Kwek L C 2018 Phys. Rev. Lett. 120 163601
[26] Roulet A and Bruder C 2018 Phys. Rev. Lett. 121 053601
[27] Parra-López Á and Bergli J 2020 Phys. Rev. A 101 062104
[28] Laskar A W, Adhikary P, Mondal S, Katiyar P, Vinjanampathy S and Ghosh S 2020 Phys. Rev. Lett. 125 013601
[29] Koppenhöfer M, Bruder C and Roulet A 2020 Phys. Rev. Res. 2 023026
[30] Giorgi G L, Cabot A and Zambrini R 2019 Transient synchronization in open quantum systems (Cham: Springer) pp. 73-89
[31] Giorgi G L, Plastina F, Francica G and Zambrini R 2013 Phys. Rev. A 88 042115
[32] Giorgi G L, Galve F and Zambrini R 2016 Phys. Rev. A 94 052121
[33] Scarani V, Ziman M, Štelmachovič P, Gisin N and Bužek V 2002 Phys. Rev. Lett. 88 097905
[34] Chitambar E and Hsieh M H 2016 Phys. Rev. Lett. 117 020402
[35] Acín A, Bloch I, Buhrman H, Calarco T, Eichler C, Eisert J, Esteve D, Gisin N, Glaser S J, Jelezko F, Kuhr S, Lewenstein M, Riedel M F, Schmidt P O, Thew R, Wallraff A, Walmsley I and Wilhelm F K 2018 New J. Phys. 20 080201
[36] Du S J, Peng Y, Feng H R, Han F, Yang L W and Zheng Y J 2020 Chin. Phys. B 29 074202
[37] Siwiak-Jaszek S and Olaya-Castro A 2019 Faraday Discussions 216 38
[38] Giovannetti V and Palma G M 2012 Phys. Rev. Lett. 108 040401
[39] McCloskey R and Paternostro M 2014 Phys. Rev. A 89 052120
[40] Lorenzo S, McCloskey R, Ciccarello F, Paternostro M and Palma G 2015 Phys. Rev. Lett. 115 120403
[41] Lorenzo S, Farace A, Ciccarello F, Palma G M and Giovannetti V 2015 Phys. Rev. A 91 022121
[42] Pezzutto M, Paternostro M and Omar Y 2016 New J. Phys. 18 123018
[43] de Vega I and Alonso D 2017 Rev. Mod. Phys. 89 015001
[44] Cusumano S, Cavina V, Keck M, Pasquale A D and Giovannetti V 2018 Phys. Rev. A 98 032119
[45] Jin J and shui Yu C 2018 New J. Phys. 20 053026
[46] Li L, Zou J, Li H, Xu B M, Wang Y M and Shao B 2018 Phys. Rev. E 97 022111
[47] Rodrigues F L, Chiara G D, Paternostro M and Landi G T 2019 Phys. Rev. Lett. 123 140601
[48] Man Z X, Xia Y J and Franco R L 2019 Phys. Rev. A 99 042106
[49] Chiara G D and Antezza M 2020 Phys. Rev. Res. 2 033315
[50] Li X M, Chen Y X, Xia Y J, Zhang Q and Man Z X 2020 Chin. Phys. B 29 060302
[51] Comar N E and Landi G T 2021 Phys. Rev. A 104 032217
[52] Heineken D, Beyer K, Luoma K and Strunz W T 2021 Phys. Rev. A 104 052426
[53] Campbell S and Vacchini B 2021 Europhys. Lett. 133 60001
[54] Cattaneo M, Chiara G D, Maniscalco S, Zambrini R and Giorgi G L 2021 Phys. Rev. Lett. 126 130403
[55] Ciccarello F, Lorenzo S, Giovannetti V and Palma G M 2022 Phys. Rep. 954 1
[56] Palafox S, Román-Ancheyta R, Čakmak B and Özgúr E Müstecaphoǧlu 2022 Phys. Rev. E 106 054114
[57] Mayo F and Roncaglia A J 2022 Phys. Rev. A 105 062203
[58] Daryanoosh S, Gilchrist A and Baragiola B Q 2022 Phys. Rev. A 106 022202
[59] Hu H R, Li L, Zou J and Liu W M 2022 Phys. Rev. A 105 062429
[60] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[61] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[1] One-step quantum dialogue
Peng-Hui Zhu(朱鹏辉), Wei Zhong(钟伟), Ming-Ming Du(杜明明), Xi-Yun Li(李喜云), Lan Zhou(周澜), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2024, 33(3): 030302.
[2] Spatial quantum coherent modulation with perfect hybrid vector vortex beam based on atomic medium
Yan Ma(马燕), Xin Yang(杨欣), Hong Chang(常虹), Xin-Qi Yang(杨鑫琪), Ming-Tao Cao(曹明涛), Xiao-Fei Zhang(张晓斐), Hong Gao(高宏), Rui-Fang Dong(董瑞芳), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2024, 33(2): 024204.
[3] Genuine entanglement under squeezed generalized amplitude damping channels with memory
Mazhar Ali. Chin. Phys. B, 2024, 33(2): 020307.
[4] Preparing highly entangled states of nanodiamond rotation and NV center spin
Wen-Liang Li(李文亮) and Duan-Lu Zhou(周端陆). Chin. Phys. B, 2024, 33(2): 020305.
[5] Generation of hyperentangled photon pairs based on lithium niobate waveguide
Yang-He Chen(陈洋河), Zhen Jiang(姜震), and Guang-Qiang He(何广强). Chin. Phys. B, 2023, 32(9): 090306.
[6] Algorithm for evaluating distance-based entanglement measures
Yixuan Hu(胡奕轩), Ye-Chao Liu(刘烨超), and Jiangwei Shang(尚江伟). Chin. Phys. B, 2023, 32(8): 080307.
[7] Degenerate polarization entangled photon source based on a single Ti-diffusion lithium niobate waveguide in a polarization Sagnac interferometer
Yu Sun(孙宇), Chang-Wei Sun(孙昌伟), Wei Zhou(周唯), Ran Yang(杨然), Jia-Chen Duan(端家晨), Yan-Xiao Gong(龚彦晓), Ping Xu(徐平), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2023, 32(8): 080308.
[8] First-order quantum phase transition and entanglement in the Jaynes-Cummings model with a squeezed light
Chun-Qi Tang(汤椿琦) and Li-Tuo Shen(沈利托). Chin. Phys. B, 2023, 32(7): 070303.
[9] Complete hyperentangled Greenberger-Horne-Zeilinger state analysis for polarization and time-bin hyperentanglement
Zhi Zeng(曾志). Chin. Phys. B, 2023, 32(6): 060301.
[10] Faithful and efficient hyperentanglement purification for spatial-polarization-time-bin photon system
Fang-Fang Du(杜芳芳), Gang Fan(樊钢), Yi-Ming Wu(吴一鸣), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2023, 32(6): 060304.
[11] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[12] Generation of microwave photon perfect W states of three coupled superconducting resonators
Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭). Chin. Phys. B, 2023, 32(4): 040306.
[13] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[14] New light fields based on integration theory within the Weyl ordering product of operators
Ke Zhang(张科), Lan-Lan Li(李兰兰), Da-Wei Guo(郭大伟), and Hong-Yi Fan(范洪义). Chin. Phys. B, 2023, 32(4): 040301.
[15] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
No Suggested Reading articles found!