Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020305    DOI: 10.1088/1674-1056/ad117a
GENERAL Prev   Next  

Preparing highly entangled states of nanodiamond rotation and NV center spin

Wen-Liang Li(李文亮)1,2 and Duan-Lu Zhou(周端陆)1,2,†
1 Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  A nanodiamond with an embedded nitrogen-vacancy (NV) center is one of the experimental systems that can be coherently manipulated within current technologies. Entanglement between NV center electron spin and mechanical rotation of the nanodiamond plays a fundamental role in building a quantum network connecting these microscopic and mesoscopic degrees of motions. Here we present a protocol to asymptotically prepare a highly entangled state of the total quantum angular momentum and electron spin by adiabatically boosting the external magnetic field.
Keywords:  nanodiamond      NV center      entanglement  
Received:  12 October 2023      Revised:  27 November 2023      Accepted manuscript online:  01 December 2023
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Aa (Quantum systems with finite Hilbert space)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA0718302 and 2021YFA1402104), the National Natural Science Foundation of China (Grant No. 12075310), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000).
Corresponding Authors:  Duan-Lu Zhou     E-mail:  zhoudl72@iphy.ac.cn

Cite this article: 

Wen-Liang Li(李文亮) and Duan-Lu Zhou(周端陆) Preparing highly entangled states of nanodiamond rotation and NV center spin 2024 Chin. Phys. B 33 020305

[1] Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J and Hollenberg L C L 2013 Phys. Rep. 528 1
[2] Chu Y and Lukin M D 2017 Quantum Optics and Nanophotonics (1st edn.) (Oxford University PressOxford) pp. 229-270
[3] Awschalom D D, Hanson R, Wrachtrup J and Zhou B B 2018 Nat. Photonics 12 516
[4] Gieseler J, Deutsch B, Quidant R and Novotny L 2012 Phys. Rev. Lett. 109 103603
[5] Delić U, Reisenbauer M, Dare K, Grass D, Vuletić V, Kiesel N and Aspelmeyer M 2020 Science 367 892
[6] Tebbenjohanns F, Mattana M L, Rossi M, Frimmer M and Novotny L 2021 Nature 595 378
[7] Yin Z Q, Li T, Zhang X and Duan L M 2013 Phys. Rev. A 88 033614
[8] Yin Z, Zhao N and Li T 2015 Science China Physics, Mechanics & Astronomy 58 1
[9] Wan C, Scala M, Morley G W, Rahman A A, Ulbricht H, Bateman J, Barker P F, Bose S and Kim M S 2016 Phys. Rev. Lett. 117 143003
[10] Pedernales J S, Morley G W and Plenio M B 2020 Phys. Rev. Lett. 125 023602
[11] Arita Y, Mazilu M and Dholakia K 2013 Nat. Commun. 4 2374
[12] Hoang T M, Ma Y, Ahn J, Bang J, Robicheaux F, Yin Z Q and Li T 2016 Phys. Rev. Lett. 117 123604
[13] Kuhn S, Kosloff A, Stickler B A, Patolsky F, Hornberger K, Arndt M and Millen J 2017 Optica 4 356
[14] Kuhn S, Stickler B A, Kosloff A, Patolsky F, Hornberger K, Arndt M and Millen J 2017 Nat. Commun. 8 1670
[15] Rashid M, Toroš M, Setter A and Ulbricht H 2018 Phys. Rev. Lett. 121 253601
[16] Delord T, Nicolas L, Chassagneux Y and Hétet G 2017 Phys. Rev. A 96 063810
[17] Delord T, Huillery P, Nicolas L and Hétet G 2020 Nature 580 56
[18] Stickler B A, Papendell B, Kuhn S, Schrinski B, Millen J, Arndt M and Hornberger K 2018 New J. Phys. 20 122001
[19] Stickler B A, Hornberger K and Kim M S 2021 Nature Reviews Physics 3 589
[20] Perdriat M, Huillery P, Pellet-Mary C and Hétet G 2022 Phys. Rev. Lett. 128 117203
[21] Rusconi C C, Perdriat M, Hétet G, Romero-Isart O and Stickler B A 2022 Phys. Rev. Lett. 129 093605
[22] Chitambar E and Gour G 2019 Rev. Mod. Phys. 91 025001
[23] Biedenharn L C and Louck J D 1981 Angular Momentum in Quantum Physics: Theory and Application number v. 8 in Encyclopedia of Mathematics and Its Applications; Section, Mathematics of Physics (Reading, Mass: Addison-Wesley Pub. Co., Advanced Book Program)
[24] Landau L D and Lifshitz E M 2013 Quantum Mechanics: Non-Relativistic Theory (Vol. 3) (Elsevier)
[25] Yamanouchi K 2012 Quantum Mechanics of Molecular Structures (Berlin, Heidelberg: Springer Berlin Heidelberg)
[26] Loubser J H N and van Wyk J A 1978 Rep. Prog. Phys. 41 1201
[27] Rusconi C C and Romero-Isart O 2016 Phys. Rev. B 93 054427
[28] Hudak B M and Stroud R M 2023 ACS Nano 17 7241
[29] Einstein A 1915 Naturwissenschaften 3 237
[30] Richardson O W 1908 Physical Review (Series I) 26 248
[31] Barnett S J 1915 Phys. Rev. 6 239
[32] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[33] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[34] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[1] One-step quantum dialogue
Peng-Hui Zhu(朱鹏辉), Wei Zhong(钟伟), Ming-Ming Du(杜明明), Xi-Yun Li(李喜云), Lan Zhou(周澜), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2024, 33(3): 030302.
[2] Quantum synchronization with correlated baths
Lei Li(李磊), Chun-Hui Wang(王春辉), Hong-Hao Yin(尹洪浩), Ru-Quan Wang(王如泉), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2024, 33(2): 020306.
[3] Genuine entanglement under squeezed generalized amplitude damping channels with memory
Mazhar Ali. Chin. Phys. B, 2024, 33(2): 020307.
[4] Generation of hyperentangled photon pairs based on lithium niobate waveguide
Yang-He Chen(陈洋河), Zhen Jiang(姜震), and Guang-Qiang He(何广强). Chin. Phys. B, 2023, 32(9): 090306.
[5] Algorithm for evaluating distance-based entanglement measures
Yixuan Hu(胡奕轩), Ye-Chao Liu(刘烨超), and Jiangwei Shang(尚江伟). Chin. Phys. B, 2023, 32(8): 080307.
[6] Degenerate polarization entangled photon source based on a single Ti-diffusion lithium niobate waveguide in a polarization Sagnac interferometer
Yu Sun(孙宇), Chang-Wei Sun(孙昌伟), Wei Zhou(周唯), Ran Yang(杨然), Jia-Chen Duan(端家晨), Yan-Xiao Gong(龚彦晓), Ping Xu(徐平), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2023, 32(8): 080308.
[7] First-order quantum phase transition and entanglement in the Jaynes-Cummings model with a squeezed light
Chun-Qi Tang(汤椿琦) and Li-Tuo Shen(沈利托). Chin. Phys. B, 2023, 32(7): 070303.
[8] Complete hyperentangled Greenberger-Horne-Zeilinger state analysis for polarization and time-bin hyperentanglement
Zhi Zeng(曾志). Chin. Phys. B, 2023, 32(6): 060301.
[9] Faithful and efficient hyperentanglement purification for spatial-polarization-time-bin photon system
Fang-Fang Du(杜芳芳), Gang Fan(樊钢), Yi-Ming Wu(吴一鸣), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2023, 32(6): 060304.
[10] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[11] Generation of microwave photon perfect W states of three coupled superconducting resonators
Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭). Chin. Phys. B, 2023, 32(4): 040306.
[12] New light fields based on integration theory within the Weyl ordering product of operators
Ke Zhang(张科), Lan-Lan Li(李兰兰), Da-Wei Guo(郭大伟), and Hong-Yi Fan(范洪义). Chin. Phys. B, 2023, 32(4): 040301.
[13] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[14] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[15] Parameterized monogamy and polygamy relations of multipartite entanglement
Zhong-Xi Shen(沈中喜), Ke-Ke Wang(王珂珂), and Shao-Ming Fei(费少明). Chin. Phys. B, 2023, 32(12): 120303.
No Suggested Reading articles found!