|
|
Preparing highly entangled states of nanodiamond rotation and NV center spin |
Wen-Liang Li(李文亮)1,2 and Duan-Lu Zhou(周端陆)1,2,† |
1 Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract A nanodiamond with an embedded nitrogen-vacancy (NV) center is one of the experimental systems that can be coherently manipulated within current technologies. Entanglement between NV center electron spin and mechanical rotation of the nanodiamond plays a fundamental role in building a quantum network connecting these microscopic and mesoscopic degrees of motions. Here we present a protocol to asymptotically prepare a highly entangled state of the total quantum angular momentum and electron spin by adiabatically boosting the external magnetic field.
|
Received: 12 October 2023
Revised: 27 November 2023
Accepted manuscript online: 01 December 2023
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.65.Aa
|
(Quantum systems with finite Hilbert space)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA0718302 and 2021YFA1402104), the National Natural Science Foundation of China (Grant No. 12075310), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000). |
Corresponding Authors:
Duan-Lu Zhou
E-mail: zhoudl72@iphy.ac.cn
|
Cite this article:
Wen-Liang Li(李文亮) and Duan-Lu Zhou(周端陆) Preparing highly entangled states of nanodiamond rotation and NV center spin 2024 Chin. Phys. B 33 020305
|
[1] Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J and Hollenberg L C L 2013 Phys. Rep. 528 1 [2] Chu Y and Lukin M D 2017 Quantum Optics and Nanophotonics (1st edn.) (Oxford University PressOxford) pp. 229-270 [3] Awschalom D D, Hanson R, Wrachtrup J and Zhou B B 2018 Nat. Photonics 12 516 [4] Gieseler J, Deutsch B, Quidant R and Novotny L 2012 Phys. Rev. Lett. 109 103603 [5] Delić U, Reisenbauer M, Dare K, Grass D, Vuletić V, Kiesel N and Aspelmeyer M 2020 Science 367 892 [6] Tebbenjohanns F, Mattana M L, Rossi M, Frimmer M and Novotny L 2021 Nature 595 378 [7] Yin Z Q, Li T, Zhang X and Duan L M 2013 Phys. Rev. A 88 033614 [8] Yin Z, Zhao N and Li T 2015 Science China Physics, Mechanics & Astronomy 58 1 [9] Wan C, Scala M, Morley G W, Rahman A A, Ulbricht H, Bateman J, Barker P F, Bose S and Kim M S 2016 Phys. Rev. Lett. 117 143003 [10] Pedernales J S, Morley G W and Plenio M B 2020 Phys. Rev. Lett. 125 023602 [11] Arita Y, Mazilu M and Dholakia K 2013 Nat. Commun. 4 2374 [12] Hoang T M, Ma Y, Ahn J, Bang J, Robicheaux F, Yin Z Q and Li T 2016 Phys. Rev. Lett. 117 123604 [13] Kuhn S, Kosloff A, Stickler B A, Patolsky F, Hornberger K, Arndt M and Millen J 2017 Optica 4 356 [14] Kuhn S, Stickler B A, Kosloff A, Patolsky F, Hornberger K, Arndt M and Millen J 2017 Nat. Commun. 8 1670 [15] Rashid M, Toroš M, Setter A and Ulbricht H 2018 Phys. Rev. Lett. 121 253601 [16] Delord T, Nicolas L, Chassagneux Y and Hétet G 2017 Phys. Rev. A 96 063810 [17] Delord T, Huillery P, Nicolas L and Hétet G 2020 Nature 580 56 [18] Stickler B A, Papendell B, Kuhn S, Schrinski B, Millen J, Arndt M and Hornberger K 2018 New J. Phys. 20 122001 [19] Stickler B A, Hornberger K and Kim M S 2021 Nature Reviews Physics 3 589 [20] Perdriat M, Huillery P, Pellet-Mary C and Hétet G 2022 Phys. Rev. Lett. 128 117203 [21] Rusconi C C, Perdriat M, Hétet G, Romero-Isart O and Stickler B A 2022 Phys. Rev. Lett. 129 093605 [22] Chitambar E and Gour G 2019 Rev. Mod. Phys. 91 025001 [23] Biedenharn L C and Louck J D 1981 Angular Momentum in Quantum Physics: Theory and Application number v. 8 in Encyclopedia of Mathematics and Its Applications; Section, Mathematics of Physics (Reading, Mass: Addison-Wesley Pub. Co., Advanced Book Program) [24] Landau L D and Lifshitz E M 2013 Quantum Mechanics: Non-Relativistic Theory (Vol. 3) (Elsevier) [25] Yamanouchi K 2012 Quantum Mechanics of Molecular Structures (Berlin, Heidelberg: Springer Berlin Heidelberg) [26] Loubser J H N and van Wyk J A 1978 Rep. Prog. Phys. 41 1201 [27] Rusconi C C and Romero-Isart O 2016 Phys. Rev. B 93 054427 [28] Hudak B M and Stroud R M 2023 ACS Nano 17 7241 [29] Einstein A 1915 Naturwissenschaften 3 237 [30] Richardson O W 1908 Physical Review (Series I) 26 248 [31] Barnett S J 1915 Phys. Rev. 6 239 [32] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314 [33] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [34] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|