Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020304    DOI: 10.1088/1674-1056/ad117d
GENERAL Prev   Next  

Holevo bound independent of weight matrices for estimating two parameters of a qubit

Chang Niu(牛畅)1 and Sixia Yu(郁司夏)1,2,†
1 Department of Modern Physics & Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China;
2 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Abstract  Holevo bound plays an important role in quantum metrology as it sets the ultimate limit for multi-parameter estimations, which can be asymptotically achieved. Except for some trivial cases, the Holevo bound is implicitly defined and formulated with the help of weight matrices. Here we report the first instance of an intrinsic Holevo bound, namely, without any reference to weight matrices, in a nontrivial case. Specifically, we prove that the Holevo bound for estimating two parameters of a qubit is equivalent to the joint constraint imposed by two quantum Cramér-Rao bounds corresponding to symmetric and right logarithmic derivatives. This weightless form of Holevo bound enables us to determine the precise range of independent entries of the mean-square error matrix, i.e., two variances and one covariance that quantify the precisions of the estimation, as illustrated by different estimation models. Our result sheds some new light on the relations between the Holevo bound and quantum Cramér-Rao bounds. Possible generalizations are discussed.
Keywords:  quantum metrology      quantum Fisher information      Holevo bound      quantum multi-parameter estimation  
Received:  16 November 2023      Revised:  30 November 2023      Accepted manuscript online:  01 December 2023
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Aa (Quantum systems with finite Hilbert space)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.-a (Quantum information)  
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province of China (Grant Nos. 2020B0303010001 and SIQSE202104).
Corresponding Authors:  Sixia Yu     E-mail:  yusixia@ustc.edu.cn

Cite this article: 

Chang Niu(牛畅) and Sixia Yu(郁司夏) Holevo bound independent of weight matrices for estimating two parameters of a qubit 2024 Chin. Phys. B 33 020304

[1] Holevo A 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland Publishing Company)
[2] Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press)
[3] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[4] Tóth G and Apellaniz I 2014 J. Phys. A: Math. Theor. 47 424006
[5] Szczykulska M, Baumgratz T and Datta A 2016 Adv. Phys. X 1:4 621
[6] Carollo A, Spagnolo B, Dubkov A A, et al. 2019 J. Stat. Mech.: Theory Exp. 2019 094010
[7] Demkowicz-Dobrzaski R, Grecki W and Gu M 2020 J. Phys. A: Math. Theor. 53 363001
[8] Meyer J J, Borregaard J and Eisert J A 2021 NPJ Quantum Inf. 7 89
[9] Grecki W, Zhou S, Jiang L, et al. 2020 Quantum 4 288
[10] Caves C M 1981 Phys. Rev. D 23 1693
[11] Adhikari R X 2014 Rev. Mod. Phys. 86 121
[12] Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 061102
[13] Taylor M A and Bowen W P 2014 arXiv: 1409.0950 [quant-ph]
[14] Helstrom C W 1967 Phys. Lett. A 25 101
[15] Helstrom C W 1968 IEEE Trans. Inf. Theory 14 234
[16] Belavkin V P 1976 Theor. Math. Phys. 26 213
[17] Yuen H P and Lax M 1973 IEEE Trans. Inf. Theory 19 740
[18] Gu M and Kahn J 2006 Phys. Rev. A 73 052108
[19] Hayashi M and Matsumoto K 2008 J. Math. Phys. 49 102101
[20] Kahn J and Gu M 2009 Commun. Math. Phys. 289 597
[21] Yamagata K, Fujiwara A and Gill R D 2013 Ann. Stat. 41 2197
[22] Suzuki J 2016 J. Math. Phys. 57 042201
[23] Hayashi M 2005 Asymptotic Theory of Quantum Statistical Inference (Singapore: World Scientific Publishing)
[24] Suzuki J 2020 J. Phys. A: Math. Theor. 53 264001
[25] Yamagata K 2021 J. Math. Phys. 62 062203
[1] Parameter estimation in n-dimensional massless scalar field
Ying Yang(杨颖) and Jiliang Jing(荆继良). Chin. Phys. B, 2024, 33(3): 030307.
[2] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[3] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[4] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[5] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[6] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[7] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
[8] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[9] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[10] Effect of system-reservoir correlations on temperature estimation
Wen-Li Zhu(朱雯丽), Wei Wu(吴威), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(2): 020501.
[11] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[12] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[13] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[14] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[15] Modulating quantum Fisher information of qubit in dissipative cavity by coupling strength
Danping Lin(林丹萍), Yu Liu(刘禹), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(11): 110303.
No Suggested Reading articles found!