Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 024206    DOI: 10.1088/1674-1056/ad09cb
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Broadband bidirectional Brillouin-Raman random fiber laser with ultra-narrow linewidth

Qian Yang(杨茜), Yang Li(李阳), Hui Zou(邹辉), Jie Mei(梅杰), En-Ming Xu(徐恩明), and Zu-Xing Zhang(张祖兴)
Advanced Photonic Technology Laboratory, College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  We present a Brillouin-Raman random fiber laser (BRRFL) with full-open linear cavity structure to generate broadband Brillouin frequency comb (BFC) with double Brillouin-frequency-shift spacing. The incorporation of a regeneration portion consisting of an erbium-doped fiber and a single-mode fiber enables the generation of broadband BFC. The dynamics of broadband BFC generation changing with the pump power (EDF and Raman) and Brillouin pump (BP) wavelength are investigated in detail, respectively. Under suitable conditions, the bidirectional BRRFL proposed can produce a flat-amplitude BFC with 40.7-nm bandwidth ranging from 1531 nm to 1571.7 nm, and built-in 242-order Brillouin Stokes lines (BSLs) with double Brillouin-frequency-shift spacing. Moreover, the linewidth of single BSL is experimentally measured to be about 2.5 kHz. The broadband bidirectional narrow-linewidth BRRFL has great potential applications in optical communication, optical sensing, spectral measurement, and so on.
Keywords:  random laser      fiber laser      stimulated Brillouin scattering (SBS)      stimulated Raman scattering (SRS)  
Received:  20 July 2023      Revised:  26 October 2023      Accepted manuscript online:  06 November 2023
PACS:  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62175116 and 91950105), the 1311 Talent Plan of Nanjing University of Posts and Telecommunications, China, and the Postgraduate Research & Practice Innovation Program, Jiangsu Province, China (Grant No. SJCX21_0276).
Corresponding Authors:  Zu-Xing Zhang     E-mail:  zxzhang@njupt.edu.cn

Cite this article: 

Qian Yang(杨茜), Yang Li(李阳), Hui Zou(邹辉), Jie Mei(梅杰), En-Ming Xu(徐恩明), and Zu-Xing Zhang(张祖兴) Broadband bidirectional Brillouin-Raman random fiber laser with ultra-narrow linewidth 2024 Chin. Phys. B 33 024206

[1] Min B, Kim P and Park D 2001 IEEE Photon. Technol. Lett. 13 1352
[2] Murray J, Cerjan A and Redding B 2022 Optica 9 80
[3] Adikan F, Mahdi M A, Almansoori M H and Abdrahman M K 2005 Opt. Express 13 3471
[4] Zamzuri A K, Ali M I M, Ahmad A, Mohamad R and Mahdi M A 2006 Opt. Lett. 31 918
[5] Song Y J, Zhan L, Ji J H, Su Y, Ye Q H and Xia Y X 2005 Opt. Lett. 30 486
[6] Al-Alimi A W, Yaacob M H and Abas A F 2013 IEEE Photon. J. 5 1501010
[7] Zhang L, Xu Y P, Lu P, Mihailov S, Chen L and Bao X Y 2018 J. Lightwave Technol. 36 2122
[8] Abass A K, Al-Mansoori M H, Jamaludin M Z, Abdullah F, Al-Mashhadani T F and Ali M H 2014 Appl. Opt. 53 5187
[9] Mamdoohi G, Sarmani A, Abu Bakar M and Mahdi M 2015 Opt. Express 23 25570
[10] Wu H, Wang Z, Sun W, He Q, Wei Z and Rao Y J 2017 J. Lightwave Technol. 36 844
[11] Mamdoohi G, Sarmani A R, Bakar M H A and Mahdi M A 2018 IEEE Photon. J. 10 7201011
[12] Al-Alimi A W, Cholan N A, Salam S, Kamil Y M, Ahmed M H M and Mahdi M A 2021 Results in Phys. 25 104149
[13] Turitsyn S K, Babin S A, El-Taher A E, Harper P, Churkin D V, Kablukov S I, Ania-Castañón J D, Karalekas V and Podivilov E V 2010 Nat. Photon. 4 231
[14] Wu H, Wang Z N, Jia X, Li P, Fan M, Li Y and Zhu Y 2013 Appl. Phys. B 112 467
[15] Wang Z N, Wu H, Fan M Q, Li Y, Gong Y and Rao Y J 2013 Opt. Express 21 29358
[16] Ahmad H and Al-Alimi A W 2019 Opt. Commun. 453 124402
[17] Ahmad H and Al-Alimi A W 2020 Appl. Opt. 59 1876
[18] Mamdoohi G, Sarmani A R, Abas A F, Yaacob M H, Mokhtar M and Mahdi M A 2013 Opt. Express 21 18724
[19] Al-Alimi A W, Sarmani A R, Al-Mansoori M H, Abas A F, Alresheedi M T and Mahdi M A 2018 Opt. Express 26 30978
[20] Mei J, Jiang Q, Liu S, Xu E and Zhang Z 2020 IEEE Photon. Technol. Lett. 32 1215
[21] Pang M, Xie S, Bao X, Zhou D P, Lu Y and Chen L 2012 Opt. Lett. 37 3129
[22] Xu Y, Zhang L, Chen L and Bao X 2017 Opt. Express 25 15828
[23] Xu L, Wang Y, Dai S, Zhang L, Wu D, Shen H, Yang F and Xu Z 2022 Opt. & Laser Technol. 156 108471
[1] Single-frequency linearly polarized Q-switched fiber laser based on Nb2GeTe4 saturable absorber
Si-Yu Chen(陈思雨), Hai-Qin Deng(邓海芹), Wan-Ru Zhang(张万儒), Yong-Ping Dai(戴永平), Tao Wang(王涛), Qiang Yu(俞强), Can Li(李灿), Man Jiang(姜曼), Rong-Tao Su(粟荣涛), Jian Wu(吴坚), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(7): 074203.
[2] Antimonene-based saturable absorber for a soliton mode-locked and Q-switched fiber laser in the 2 μm wavelength region
H Ahmad, B Nizamani, M Z Samion, N Yusoff, and M F Ismail. Chin. Phys. B, 2023, 32(6): 064205.
[3] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[4] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[5] Comprehensive analysis of pure-quartic soliton dynamics in a passively mode-locked fiber laser
Lie Liu(刘列), Ying Han(韩颖), Jiayu Huo(霍佳雨), Honglin Wen(文红琳), Ge Wu(吴戈), and Bo Gao(高博). Chin. Phys. B, 2023, 32(11): 114209.
[6] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[7] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[8] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[9] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[10] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[11] Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser
Xude Wang(汪徐德), Simin Yang(杨思敏), Mengqiu Sun(孙梦秋), Xu Geng(耿旭), Jieyu Pan (潘婕妤), Shuguang Miao(苗曙光), and Suwen Li(李素文). Chin. Phys. B, 2021, 30(6): 064212.
[12] Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser
F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi. Chin. Phys. B, 2021, 30(5): 054204.
[13] Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser
Xiao-Fa Wang(王小发), Dong-Xin Liu(刘东鑫), Hui-Hui Han(韩慧慧), and Hong-Yang Mao(毛红炀). Chin. Phys. B, 2021, 30(5): 054205.
[14] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[15] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
No Suggested Reading articles found!