INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Dynamical behavior of memristor-coupled heterogeneous discrete neural networks with synaptic crosstalk |
Minglin Ma(马铭磷)†, Kangling Xiong(熊康灵), Zhijun Li(李志军), and Shaobo He(贺少波) |
School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China |
|
|
Abstract Synaptic crosstalk is a prevalent phenomenon among neuronal synapses, playing a crucial role in the transmission of neural signals. Therefore, considering synaptic crosstalk behavior and investigating the dynamical behavior of discrete neural networks are highly necessary. In this paper, we propose a heterogeneous discrete neural network (HDNN) consisting of a three-dimensional KTz discrete neuron and a Chialvo discrete neuron. These two neurons are coupled mutually by two discrete memristors and the synaptic crosstalk is considered. The impact of crosstalk strength on the firing behavior of the HDNN is explored through bifurcation diagrams and Lyapunov exponents. It is observed that the HDNN exhibits different coexisting attractors under varying crosstalk strengths. Furthermore, the influence of different crosstalk strengths on the synchronized firing of the HDNN is investigated, revealing a gradual attainment of phase synchronization between the two discrete neurons as the crosstalk strength decreases.
|
Received: 01 July 2023
Revised: 23 July 2023
Accepted manuscript online: 10 August 2023
|
PACS:
|
87.19.lg
|
(Synapses: chemical and electrical (gap junctions))
|
|
87.19.lj
|
(Neuronal network dynamics)
|
|
87.19.lm
|
(Synchronization in the nervous system)
|
|
45.05.+x
|
(General theory of classical mechanics of discrete systems)
|
|
Fund: Project supported by the Key Projects of Hunan Provincial Department of Education (Grant No. 23A0133), the Natural Science Foundation of Hunan Province (Grant No. 2022JJ30572), and the National Natural Science Foundations of China (Grant No. 62171401). |
Corresponding Authors:
Minglin Ma
E-mail: minglin_ma@xtu.edu.cn
|
Cite this article:
Minglin Ma(马铭磷), Kangling Xiong(熊康灵), Zhijun Li(李志军), and Shaobo He(贺少波) Dynamical behavior of memristor-coupled heterogeneous discrete neural networks with synaptic crosstalk 2024 Chin. Phys. B 33 028706
|
[1] Xie Y, Ying X and Jun M 2023 Nonlinear Dyn. 111 11521 [2] Wen Z, Wang C, Deng Q and Lin H 2022 Nonlinear Dyn. 110 3823 [3] Deng Z K, Wang C H, Lin H R and Sun Y C 2022 IEEE Trans. Comput.-Aided Des. Int. Circuits Syst. [4] Sun J, Wang Y, Liu P, Wen S and Wang Y 2022 IEEE Trans. Cybern. 53 3351 [5] Muni S S, Fatoyinbo H O and Ghosh I 2022 Int. J. Bifurcation Chaos 32 2230020 [6] Jin J, Chen W, Chen C, Chen L, Tang Z, Chen L and Zhu C 2022 IEEE Trans. Indust. Inform. 19 8691 [7] Zhou S, Wang X, Zhang Y, Ge B, Wang M and Gao S 2022 Multimedia Syst. 28 95 [8] Yu F, Shen H, Yu Q, Kong X, Sharma P K and Cai S 2022 IEEE Trans. Netw. Sci. Eng. 10 845 [9] Yu F, Xu S, Xiao X, Yao W, Huang Y, Cai S and Li Y 2023 Integration 90 58 [10] Chua L 1971 IEEE Trans. Circuit Theory 18 507 [11] Muni S S and Provata A 2020 Nonlinear Dyn. 101 2509 [12] Chen C, Min F, Zhang Y and Bao H 2023 Chaos Solitons Fractals 167 113068 [13] Muni S S, Njitacke Z, Feudjio C, Fozin T and Awrejcewicz J 2022 Chaos Theory Appl. 4 119 [14] Chen C, Min F, Zhang Y and Bao B 2021 Nonlinear Dyn. 106 2559 [15] Wan Q, Li F, Chen S and Yang Q 2023 Chaos Solitons Fractals 169 113259 [16] Lai Q, Wan Z, Zhang H and Chen G 2022 IEEE Trans. Neural Netw. Learn. Syst. [17] Lin H, Wang C, Cui L, Sun Y, Zhang X and Yao W 2022 Nonlinear Dyn. 110 841 [18] Yu, F, Zhang W, Xiao X, Yao W, Cai S, Zhang J and Li Y 2023 Mathematics 11 701 [19] Gu H, Li C, Li Y, Ge X and Lei T 2023 Nonlinear Dyn. 111 7807 [20] Chen W, Jin J, Chen C, Yu F and Wang C 2022 Int. J. Bifurcation Chaos 32 2250210 [21] Zhang D and Qian Y 2023 Mathematics 11 1690 [22] Li H, Li C and He S 2023 Int. J. Bifurcation Chaos 33 2350032 [23] Peng C, Li Z, Wang M and Ma M 2023 Nonlinear Dyn. [24] Njitacke Tabekoueng Z, Sriram B, Rajagopal K, Kaethikeyan A and Awrejcewicz J 2023 Chaos 33 063153 [25] Njitacke Tabekoueng Z, Shankar Muni S, Fonzin Fozin T, Dolvis Leutcho G and Awrejcewicz J 2022 Chaos: Interdiscip. J. Nonlinear Sci. 32 053114 [26] Njitacke Z T, Awrejcewicz J, Telem A N K, Fozin T F and Kengne J 2022 Euro. Phys. J. Plus 137 1135 [28] Xu Q, Liu T, Ding S, Bao H, Li Z and Chen B 2022 Cognitive Neurodyn. 17 755 [29] Wang M, Peng J, Zhang X, Iu H H C and Li Z 2023 Nonlinear Dyn. [301] Hajian D N, Ramadoss J, Natiq H and Parastesh F 2023 Chin. J. Phys. 87 311 [30] Lai Q, Wan Z and Kuate P D K 2022 IEEE Trans. Circuits Syst. I: Regular Papers 70 1324 [31] Lin H, Wang C, Sun Y and Wang T 2022 IEEE Trans. Circuits Syst. II: Express Briefs 70 311 [32] Wang M J and Gu L F 2024 Chin. Phys. B 33 020504 [341] Tang D, Wang C H, Lin H R and Yu F 2023 Nonlinear Dyn. [33] Lin H, Wang C, Xu C, Zhang X and Iu H H 2022 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 42 942 [34] Yu F, Kong X, Mokbel A A M, Yao W and Cai S 2022 IEEE Trans. Circuits Syst. II: Express Briefs 70 326 [35] Xu Y, Li H L, Zhang L, Hu C and Jiang H 2023 Neural Process. Lett. [36] Shang C, He S, Rajagopal K, Wang H and Sun K 2022 Eur. Phys. J. Spec. Top. 231 4065 [37] Ren L, Mou J, Banerjee S and Zhang Y 2023 Chaos Solitons Fractals 167 113024 [38] Yao Z, Sun K and He S 2022 Nonlinear Dyn. 110 1807 [39] Njitacke Z T, Fozin T F, Muni S S, Awrejcewicz J and Kengne J 2022 AEU-Int. J. Electron. Commun. 155 154361 [40] Rulkov N F 2001 Phys. Rev. Lett. 86 183 [41] Ramadoss J, Almatroud O A, Momani S, Pham V T and Thoai V P 2022 Symmetry 14 2110 [42] Ma M L, Yang Y, Qiu Z, Peng Y, Sun Y, Li Z and Wang M 2022 Nonlinear Dyn. 107 2935 [43] Li H, Li C and Du J 2023 Nonlinear Dyn. 111 2895 [44] Yuan F, Xing G and Deng Y 2023 Chaos Solitons Fractals 166 112888 [45] Lai Q, Yang L and Liu Y 2022 Chaos Solitons Fractals 165 112781 [46] Ma M L, Xie X H, Yang Y, Li Z J and Sun Y C 2023 Chin. Phys. B 32 058701 [47] Yuan F, Xing G and Deng Y 2023 Chaos Solitons Fractals 166 112888 [48] He S, Liu J, Wang H and Sun K 2023 Neurocomputing 523 1 [49] Peng Y, Liu J, He S and Sun K 2023 Chaos Solitons Fractals 171 113429 [50] Almatroud O A and Pham V T 2023 Mathematics 11 1319 [51] Kengne L K, Muni S S, Chedjou J C and Kyandoghere K 2022 Eur. Phys. J. Plus 137 848 [52] Li Y, Xiao L, Wei Z and Zhang W 2020 Eur. Phys. J. Spec. Top. 229 953 [53] Li C, Lei T and Liu Z 2022 Chaos: Interdiscip. J. Nonlinear Sci. 32 121104 [54] Li Y, Wei Z, Zhang W, Perc M and Repnik R 2023 Fractal Fractional 7 82 [56] Ma M L, Xiong K, Li Z and Sun Y 2023 Mathematics 11 375 [57] Lu Y M, Wang C H, Deng Q L and Xu C 2022 Chin. Phys. B 31 060502 [58] Kawahara M, Kato-Negishi M and Tanaka K 2017 Metallomics 9 619 [59] Shrivastava A N, Triller A and Sieghart W 2011 Frontiers Cell. Neurosci. 5 7 [60] Leng Y, Yu D, Hu Y, Yu S S and Ye Z 2020 Chaos 30 033108 [61] Li Z and Yi Z 2022 Electron. Lett. 58 539 [62] Chialvo D R 1995 Chaos Solitons Fractals 5 461 [63] Kuva S M, Lima G F, Kinouchi O, Tragtenberg M H and Roque A C 2001 Neurocomputing 38-40 255 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|