Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 060501    DOI: 10.1088/1674-1056/ab8626
GENERAL Prev   Next  

A novel class of two-dimensional chaotic maps with infinitely many coexisting attractors

Li-Ping Zhang(张丽萍)1,2, Yang Liu(刘洋)3, Zhou-Chao Wei(魏周超)4, Hai-Bo Jiang(姜海波)2, Qin-Sheng Bi(毕勤胜)1
1 Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China;
2 School of Mathematics and Statistics, Yancheng Teachers University, Yancheng 224002, China;
3 College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK;
4 School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
Abstract  We study a novel class of two-dimensional maps with infinitely many coexisting attractors. Firstly, the mathematical model of these maps is formulated by introducing a sinusoidal function. The existence and the stability of the fixed points in the model are studied indicating that they are infinitely many and all unstable. In particular, a computer searching program is employed to explore the chaotic attractors in these maps, and a simple map is exemplified to show their complex dynamics. Interestingly, this map contains infinitely many coexisting attractors which has been rarely reported in the literature. Further studies on these coexisting attractors are carried out by investigating their time histories, phase trajectories, basins of attraction, Lyapunov exponents spectrum, and Lyapunov (Kaplan-Yorke) dimension. Bifurcation analysis reveals that the map has periodic and chaotic solutions, and more importantly, exhibits extreme multi-stability.
Keywords:  two-dimensional map      infinitely many coexisting attractors      extreme multi-stability      chaotic attractor  
Received:  08 February 2020      Revised:  16 March 2020      Accepted manuscript online: 
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11672257, 11632008, 11772306, and 11972173), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20161314), the 5th 333 High-level Personnel Training Project of Jiangsu Province of China (Grant No. BRA2018324), and the Excellent Scientific and Technological Innovation Team of Jiangsu University.
Corresponding Authors:  Hai-Bo Jiang     E-mail:  yctcjhb@126.com

Cite this article: 

Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Qin-Sheng Bi(毕勤胜) A novel class of two-dimensional chaotic maps with infinitely many coexisting attractors 2020 Chin. Phys. B 29 060501

[1] Pisarchik A N and Feudel U 2014 Phys. Rep. 540 167
[2] Li C B and Sprott J C 2013 Int. J. Bifurc. Chaos 23 1350199
[3] Li C B and Sprott J C 2014 Int. J. Bifurc. Chaos 24 1450131
[4] Han X J, Xia F B, Zhang C and Yu Y 2017 Nonlin. Dyn. 88 2693
[5] Han X J, Zhang C, Yu Y and Bi QS 2017 Int. J. Bifurc. Chaos 27 1750051
[6] Liu Y and Páez Chávez J 2017 Physica D 348 1
[7] Yadav K, Prasad A and Shrimali M D 2018 Phys. Lett. A 382 2127
[8] Liu Y and Páez Chávez J 2017 Nonlin. Dyn. 88 1289
[9] Li C B and Sprott J C 2014 Int. J. Bifurc. Chaos 24 1450034
[10] Li C B, Sprott J C and Xing H 2016 Phys. Lett. A 380 1172
[11] Chawanya T 1996 Prog. Theor. Phys. 95 679
[12] Chawanya T 1997 Physica D 109 201
[13] Sun H Y, Scott S K and Showalter K 1999 Phys. Rev. E 60 3876
[14] Ngonghala C N, Feudel U and Showalter K 2011 Phys. Rev. E 83 056206
[15] Hens C R, Banerjee R, Feudel U and Dana S K 2012 Phys. Rev. E 85 035202
[16] Sprott J C and Li C B 2014 Phys. Rev. E 89 066901
[17] Patel M S, Patel U, Sen A, Sethia G C, Hens C, Dana S K, Feudel U, Showalter K, Ngonghala C N and Amritkar R E 2014 Phys. Rev. E 89 022918
[18] Bao B C, Xu Q, Bao H and Chen M 2016 Electron. Lett. 52 1008
[19] Bao B C, Bao H, Wang N, Chen M and Xu Q 2017 Chaos Solit. Fract. 94 102
[20] Chang H, Li Y X, Yuan F and Chen G R 2019 Int. J. Bifurc. Chaos 29 1950086
[21] Li Q, Hu S, Tang S and Zeng G 2014 Int. J. Circuit Theory Applications 42 1172
[22] Yuan F, Wang G and Wang X 2016 Chaos 26 073107
[23] Li C B, Thio W J C, Iu H H C and Lu T A 2018 IEEE Access 6 12945
[24] Yuan F, Deng Y, Li Y X and Wang G Y 2019 Nonlinear Dyn. 96 389
[25] Bao B C, Jiang T and Wang G Y 2017 Nonlin. Dyn. 89 1157
[26] Chen M, Sun M, Bao H, Hu Y and Bao B C 2019 IEEE Trans. Ind. Electron. 67 2197
[27] Bao H, Chen M, Wu H G and Bao B C 2019 Sci. China Tech. Sci.
[28] Zhang Y Z, Liu Z, Wu H G, Chen S Y and Bao B C 2019 Chaos Solit. Fract. 127 354
[29] Ye X L, Wang X Y, Gao S, Mou J, Wang Z S and Yang F F 2020 Nonlin. Dyn. 99 1489
[30] Li C B, Wang X and Chen G R 2017 Nonlin. Dyn. 90 1335
[31] Li C B, Sprott J C, Hu W and Xu Y J 2017 Int. J. Bifurc. Chaos 27 1750160
[32] Li C B and Sprott J C 2018 Phys. Lett. A 382 581
[33] Tang Y X, Khalaf A J M, Rajagopal K, Pham V T, Jafari S and Tian Y 2018 Chin. Phys. B 27 040502
[34] Jafari S, Ahmadi A, Panahi S and Rajagopal K 2018 Chaos Solit. Fract. 108 182
[35] Jafari S, Ahmadi A, Khalaf A J M, Abdolmohammadi H R, Pham V T and Alsaadi F E 2018 AEÜ-Int. J. Electron. Commun. 89 131
[36] Lai Q, Kuate P D K, Liu F and Iu H H C 2019 IEEE Trans. Circuits Syst. II
[37] Zhang S, Zeng Y C, Li Z J, Wang M J and Xiong L 2018 Chaos 28 013113
[38] Zhang X and Li Z J 2019 Int. J. Non-Linear Mech. 111 14
[39] Mira C, Gardini L, Barugola A and Cathala J C 1996 Chaotic dynamics in two-dimensional noninvertible maps (Singapore: World Scientific)
[40] Jiang H B, Liu Y, Wei Z C and Zhang L P 2016 Nonlin. Dyn. 85 2719
[41] Jiang H B, Liu Y, Wei Z C and Zhang L P 2016 Int. J. Bifurc. Chaos 26 1650206
[42] Jiang H B, Liu Y, Wei Z C and Zhang L P 2019 Int. J. Bifurc. Chaos 29 1950094
[43] Huynh V V, Ouannas A, Wang X, Pham V T, Nguyen X Q and Alsaadi F E 2019 Entropy 21 279
[44] Ouannas A, Khennaoui A A, Bendoukha S, Vo T P, Pham V T and Huynh V V 2018 Appl. Sci. 8 2640
[45] Khennaoui A A, Ouannas A, Bendoukha S, Grassi G, Wang X, Pham V T and Alsaadi F E 2019 Adv. Differ. Equ. 2019 412
[46] Ouannas A, Wang X, Khennaoui A A, Bendoukha S, Pham V T and Alsaadi F E 2018 Entropy 20 720
[47] Liu Z Y, Xia T C and Wang J B 2018 Chin. Phys. B 27 030502
[48] Hua Z Y, Zhou B H and Zhou Y C 2018 IEEE Trans. Ind. Electron. 66 1273
[49] Hua Z Y, Zhou Y C and Bao B C 2019 IEEE Trans. Ind. Informat. 16 887
[50] Simpson D J W 2014 Int. J. Bifurc. Chaos 24 1430018
[51] Simpson D J W and Tuffley C P 2017 Int. J. Bifurc. Chaos 27 1730010
[52] Sprott J C 1993 Strange attractors: creating patterns in chaos (New York: M&T books)
[53] Sprott J C 2010 Elegant chaos: algebraically simple chaotic flows (Singapore: World Scientific) pp. 24–30
[54] Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D 16 285
[1] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[2] A class of two-dimensional rational maps with self-excited and hidden attractors
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超),Hai-Bo Jiang(姜海波), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(3): 030503.
[3] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
[4] Novel two-directional grid multi-scroll chaotic attractors based on the Jerk system
Peng-Fei Ding(丁鹏飞), Xiao-Yi Feng(冯晓毅)†, and Cheng-Mao Wu(吴成茂). Chin. Phys. B, 2020, 29(10): 108202.
[5] Generation of countless embedded trumpet-shaped chaotic attractors in two opposite directions from a new three-dimensional system with no equilibrium point
Sun Chang-Chun (孙常春). Chin. Phys. B, 2014, 23(9): 090502.
[6] Generation of a novel spherical chaotic attractor from a new three-dimensional system
Sun Chang-Chun (孙常春), Zhao En-Liang (赵恩良), Xu Qi-Cheng (徐启程). Chin. Phys. B, 2014, 23(5): 050505.
[7] Novel four-dimensional autonomous chaotic system generating one-, two-, three- and four-wing attractors
Yu Fei(余飞), Wang Chun-Hua(王春华), Yin Jin-Wen(尹晋文), and Xu Hao(徐浩) . Chin. Phys. B, 2011, 20(11): 110505.
[8] The analysis of complex behaviours of a novel three dimensional autonomous system
Dong Gao-Gao (董高高), Zheng Song (郑松), Tian Li-Xin (田立新), Du Rui-Jin (杜瑞瑾), Sun Mei (孙梅). Chin. Phys. B, 2010, 19(7): 070514.
[9] Generating one-, two-, three- and four-scroll attractors from a novel four-dimensional smooth autonomous chaotic system
Sara Dadras and Hamid Reza Momeni. Chin. Phys. B, 2010, 19(6): 060506.
[10] A novel four-wing chaotic attractor generated from a three-dimensional quadratic autonomous system
Dong En-Zeng(董恩增), Chen Zai-Ping(陈在平), Chen Zeng-Qiang(陈增强), and Yuan Zhu-Zhi(袁著祉). Chin. Phys. B, 2009, 18(7): 2680-2689.
[11] Synchronization of time-delay chaotic systems on small-world networks with delayed coupling
Qi Wei(祁伟) and Wang Ying-Hai (汪映海). Chin. Phys. B, 2009, 18(4): 1404-1408.
[12] Design and implementation of a novel multi-scroll chaotic system
Zhang Chao-Xia(张朝霞) and Yu Si-Min (禹思敏). Chin. Phys. B, 2009, 18(1): 119-129.
[13] Novel four-wing and eight-wing attractors using coupled chaotic Lorenz systems
.. Giuseppe Grassi. Chin. Phys. B, 2008, 17(9): 3247-3251.
[14] Chaotic attractor transforming control of hybrid Lorenz--Chen system
Qi Dong-Lian(齐冬莲), Wang Qiao(王乔), and Gu Hong(顾弘). Chin. Phys. B, 2008, 17(3): 847-851.
[15] Multiple attractors and generalized synchronization in delayed Mackey--Glass systems
Li Dong (李栋), Zheng Zhi-Gang (郑志刚). Chin. Phys. B, 2008, 17(11): 4009-4013.
No Suggested Reading articles found!