INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Cross-frequency network analysis of functional brain connectivity in temporal lobe epilepsy |
Hai-Tao Yu(于海涛)1, Li-Hui Cai(蔡立辉)1, Xin-Yu Wu(武欣昱)1, Jiang Wang(王江)1, Jing Liu(刘静)2, Hong Zhang(张宏)2 |
1 School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China;
2 Department of Neurology, Tangshan Gongren Hospital, Tangshan 063000, China |
|
|
Abstract In this study, we investigate the cross-frequency coupling and functional brain networks in the subjects with temporal lobe epilepsy (TLE) using interictal EEG signals. The phase to phase synchronization within and across frequency bands is calculated and a significant difference between the epilepsy and control groups is observed. Compared with the controls, the epilepsy patients exhibit a stronger within-frequency coupling (WFC) within theta and beta bands, and shows a stronger cross-frequency coupling (CFC) in the delta-alpha and theta-alpha band pairs, but a weakened CFC in alpha-beta band pairs. The weakened coupling between alpha and high frequency band reflects a suppression of phase modulation between the brain regions related to epilepsy. Moreover, WFC and CFC are positively correlated, which is higher in the patients relative to controls. We further reconstruct functional brain connectivity and find that both WFC and CFC networks show small-world properties. For the epilepsy, the small-world efficiency is enhanced in the CFC networks in delta-alpha and theta-alpha band pairs, whereas weakened between alpha and beta bands, which suggests a shift away from the optimal operating point in the epileptic brain with a new balance between WFC and CFC. Our results may help us to understand the important role of information communication across different frequency bands and shed new light on the study of pathology of epilepsy.
|
Received: 25 December 2018
Revised: 21 January 2019
Accepted manuscript online:
|
PACS:
|
87.19.le
|
(EEG and MEG)
|
|
87.19.xm
|
(Epilepsy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61302002). |
Corresponding Authors:
Hong Zhang
E-mail: zhanghong063000@163.com
|
Cite this article:
Hai-Tao Yu(于海涛), Li-Hui Cai(蔡立辉), Xin-Yu Wu(武欣昱), Jiang Wang(王江), Jing Liu(刘静), Hong Zhang(张宏) Cross-frequency network analysis of functional brain connectivity in temporal lobe epilepsy 2019 Chin. Phys. B 28 048702
|
[1] |
Buteneers P, Verstraeten D, Nieuwenhuyse B V, Stroobandt D, Raedt R, Vonck K, Boon P and Schrauwen B 2013 Epilepsy Res. 103 124
|
[2] |
Chen P C, Castillo E M, Baumgartner J, Seo J H, Korostenskaja M and Lee K H 2016 Brain Topogr. 29 728
|
[3] |
Frings L, Wagner K, Halsb, U, Schwarzwald R, Zentner J and Schulze-Bonhage A 2008 Epilepsy Res. 78 161
|
[4] |
Burianová H, Faizo N L, Gray M, Hocking J, Galloway G and Reutens D 2017 Reutens Epilepsy Res. 137 45
|
[5] |
Orosco L, Correa A G, Diez P and Laciar E 2016 Compt. Biol. Med. 71 128
|
[6] |
Pippa E, Zacharaki E I, Mporas I, Tsirka V, Richardson M P, Koutroumanidis M and Megalooikonomous V 2016 Neurocomputing 171 576
|
[7] |
Zhang S and Li C S 2012 Neuroimage 59 3548
|
[8] |
Chen A C, Feng W, Zhao H, Yin Y and Wang P 2008 Neuroimage 41 561
|
[9] |
Raichle M E, MacLeod A M, Snyder A Z, Powers W J, Gusnard D A and Shulman G L 2001 Proc. Natl. Acad. Sci. USA 98 676
|
[10] |
Kim D S, Nordli D R Jr and Zelko F 2011 J. Clin. Neurophysiol. 28 463
|
[11] |
Gaillard W D, Berl M M, Moore E N, Ritzl E K, Rosenberger L R, et al. 2007 Neurology 69 1761
|
[12] |
Lima C A M, Coelho A L V and Chagas S 2009 Expert. Syst. Appl. 36 10054
|
[13] |
Bettus G, Wendling F, Guye M, Valton L, R?egis J, Chauvel P and Bartolomei F 2008 Epilepsy Res. 81 58
|
[14] |
Quraan M A, McCormick C, Cohn M, Valiante T A and McAndrews M P 2013 PLoS One 8 e68609
|
[15] |
den Heijer J M, Otte W M, van Diessen E, van Campen J S, Lorraine Hompe E, et al. 2018 Epilepsia 59 179
|
[16] |
Carpenter G A and Grossberg S 1993 Trends. Neurosci. 16 131
|
[17] |
Buzsáki G, Bragin A, Chrobak J J, Nádasdy Z, Sik A, Hsu M and Ylinen A 1994 Temporal coding in the brain pp. 145-172
|
[18] |
Klimesch W 1996 Int. J. Psychophysiol. 24 61
|
[19] |
Pfurtscheller G and Lopes da Silva F H 1999 Clin. Neurophysiol. 110 1842
|
[20] |
Elul R 1972 Int. Rev. Neurobiol. 15 227
|
[21] |
Mormann F, Kreuz T, Rieke C, Andrzejak R G, Kraskov A, David P, Elger C E and Lehnertz K 2005 Clin. Neurophysiol. 116 569
|
[22] |
Ortega G J, Peco I H, Sola R G and Pastor J 2011 Clin. Neurophysiol. 122 1106
|
[23] |
Schindler K, Elger C E and Lehnertz K 2007 Epilepsy Res. 77 108
|
[24] |
Tass P, Rosenblum M G, Weule J, Kurths J and Pikovsky A 1998 Phys. Rev. Lett. 81 3291
|
[25] |
Onslow A C, Bogacz R and Jones M W 2011 Prog. Biophys. Mol. Biol. 105 49
|
[26] |
Fitzgerald T H, Valentin A, Selway R and Richardson M P 2013 Front. Hum. Neurosci. 7 84
|
[27] |
Li C, Jacobs D, Hilton T, Campo M D, Chinvarun Y, Carlen P L and Bardakjian B L 2016 IEEE. Trans. Biomed. Eng. 63 2607
|
[28] |
Wang J, Ethridge L E, Mosconi M W, White S P, Binder D K, et al. 2017 J. Neurodev. Disord. 9 11
|
[29] |
Canolty R T and Knight R T 2010 Trends. Cogn. Sci. 14 506
|
[30] |
Palva J M, Palva S and Kaila K 2005 J. Neurosci. 25 3962
|
[31] |
Yu H T, Wu X Y, Cai L H, Deng B and Wang J 2018 IEEE. Trans. Neural. Syst. Rehabil. Eng. 26 977
|
[32] |
Yi G S, Wang J, Han C X, Deng B, Wei X L and Li N 2013 Chin. Phys. B 22 028702
|
[33] |
Zhang Y T and Liu S Q 2018 Chin. Phys. B 27 088702
|
[34] |
Strogatz S H 2001 Nature 410 268
|
[35] |
Bullmore E and Sporns O 2009 Nat. Rev. Neurosci. 10 186
|
[36] |
Bullmore E T and Bassett D S 2011 Ann. Rev. Clin. Psychol. 7 113
|
[37] |
Stam C J and Reijneveld J C 2007 Nonlinear. Biomed. Phys. 1 3
|
[38] |
Ahmadlou M, Adeli H and Adeli A 2010 J. Neural Transm. 117 1099
|
[39] |
Latora V and Marchiori M 2001 Phys. Rev. Lett. 87 198701
|
[40] |
Bassett D S and Bullmore E 2006 Neuroscientist 12 512
|
[41] |
Stam C J, Jones B F, Nolte G, Breakspear M and Scheltens P 2006 Cereb. Cortex. 17 92
|
[42] |
Pedersen M, Omidvarnia A H, Walz J M and Jackson G D 2015 Neuroimage. Clin. 8 536
|
[43] |
Ponten S C, Bartolomei F and Stam C J 2007 Clin. Neurophysiol. 118 918
|
[44] |
Watts D J and Strogatz S H 1998 Nature 393 440
|
[45] |
Maslov S and Sneppen K 2002 Science 296 910
|
[46] |
Yu M, Gouw A A, Hillebr, A, Tijms B M, Stam C J, van Straaten E C and Pijnenburg Y A 2016 Neurobiol. Aging. 42 150
|
[47] |
Sakkalis V, Neanu C D G, Xanthopoulos P, et al. 2009 IEEE Trans. Inf. Technol. Biomed. 13 433
|
[48] |
Horstmann M T, Bialonski S, Noennig N, et al. 2010 Clin. Neurophysiol. 121 172
|
[49] |
Guirgis M, Chinvarun Y, Campo M D, Carlen P L and Bardakjian B L 2015 J. Neural Eng. 12 026011
|
[50] |
Zhang R, Ren Y, Liu C, Xu N, Cong F, Ristaniemi T and Wang Y 2017 Clin. Neurophysiol. 128 1707
|
[51] |
Ramon C and Holmes M D 2013 Front. Neurol. 4 57
|
[52] |
Belluscio M A, Mizuseki K, Schimidt R, Kempter R and Buzsaki G 2012 J. Neurosci. 32 423
|
[53] |
Shen J and Tang L K 2018 Chin. Phys. B 27 100503
|
[54] |
Tewarie P, Hillebr, A, van Dijk B W, Stam C J, O'Neill G C, Van Mieghem P, Meier J M, Woolrich M W, Morris P G and Brookes M J 2016 Neuroimage 142 324
|
[55] |
Cai L H, Wei X L, Wang J, Yu H T, Deng B and Wang R F 2018 Neurocomputing 314 490
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|