Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 028707    DOI: 10.1088/1674-1056/ace2b0
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Epidemic threshold influenced by non-pharmaceutical interventions in residential university environments

Zechao Lu(卢泽超)1, Shengmei Zhao(赵生妹)1, Huazhong Shu(束华中)2, and Long-Yan Gong(巩龙延)2,†
1 Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  The control of highly contagious disease spreading in campuses is a critical challenge. In residential universities, students attend classes according to a curriculum schedule, and mainly pack into classrooms, dining halls and dorms. They move from one place to another. To simulate such environments, we propose an agent-based susceptible-infected-recovered model with time-varying heterogeneous contact networks. In close environments, maintaining physical distancing is the most widely recommended and encouraged non-pharmaceutical intervention. It can be easily realized by using larger classrooms, adopting staggered dining hours, decreasing the number of students per dorm and so on. Their real-world influence remains uncertain. With numerical simulations, we obtain epidemic thresholds. The effect of such countermeasures on reducing the number of disease cases is also quantitatively evaluated.
Keywords:  epidemic threshold      susceptible-infected-recovered model      non-pharmaceutical interventions      time-varying heterogeneous contact networks  
Received:  31 March 2023      Revised:  05 June 2023      Accepted manuscript online:  29 June 2023
PACS:  87.19.X- (Diseases)  
  89.75.Hc (Networks and genealogical trees)  
  87.23.Ge (Dynamics of social systems)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61871234).
Corresponding Authors:  Long-Yan Gong     E-mail:  lygong@njupt.edu.cn

Cite this article: 

Zechao Lu(卢泽超), Shengmei Zhao(赵生妹), Huazhong Shu(束华中), and Long-Yan Gong(巩龙延) Epidemic threshold influenced by non-pharmaceutical interventions in residential university environments 2024 Chin. Phys. B 33 028707

[1] Hekmati A, Luhar M, Krishnamachari B and Matarić M 2021 IEEE International Conference on Communications Workshops (ICC Workshops) pp. 1-6
[2] Borowiak M, Ning F, Pei J, Zhao S, Tung H and Durrett R 2021 Math. Biosci. Eng. 18 551
[3] Brooks-Pollock E, Christensen H, Trickey A, Hemani G, Nixon E, Thomas A C, Turner K, Finn A, Hickman M, Relton C and Danon L 2021 Nat. Commun. 12 5017
[4] Frazier P I, Cashore J M, Duan N, Henderson S G, Janmohamed A, Liu B, Shmoys D B, Wan J and Zhang Y 2022 Proc. Natl. Acad. Sci. USA 119 e2112532119
[5] Gressman P T and Peck J R 2020 Math. Biosci. 328 108436
[6] Ranoa D R E, Holland R L, Alnaji F G, et al. 2022 Nat. Commun. 13 3207
[7] Perra N 2021 Phys. Rep. 913 1
[8] Lai S, Ruktanonchai N W, Zhou L, et al. 2020 Nature 585 410
[9] Xiao T, Mu T, Shen S, Song Y, Yang S and He J 2022 Physica A 592 126734
[10] Gaetaa G 2020 Chaos, Solitons and Fractals 140 110074
[11] d'Onofrio A and Manfredi P 2022 Chaos, Solitons and Fractals 159 112072
[12] Tong Y H, King C and Hu Y H 2021 Chin. Phys. B 30 098903
[13] Ge Y, Zhang W, Wu X, et al. 2022 Nat. Commun. 13 3106
[14] Martcheva M 2015 An Introduction to Mathematical Epidemiology (New York: Springer)
[15] Kermack W O and McKendrick A G 1927 Proc. R. Soc. London A: Math. Phys. Eng. Sci. 115 700
[16] Pastor-Satorras R, Castellano C, Van Mieghem P and Vespignani A 2015 Rev. Mod. Phys. 87 925
[17] Leitch J, Alexander K A and Sengupta S 2019 Appl. Netw. Sci. 4 105
[18] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. Lett. 86 3200
[19] Moreno Y, Pastor-Satorras R and Vespignani A 2002 Eur. Phys. J. B 26 521
[20] Newman M E J 2002 Phys. Rev. E 66 016128
[21] Hasegawa T and Nemoto K 2016 Phys. Rev. E 93 032324
[22] Perra N, Gonçalves B, Pastor-Satorras R and Vespignani A 2012 Sci. Rep. 2 469
[23] Liu S, Perra N, Karsai M and Vespignani A 2014 Phys. Rev. Lett. 112 118702
[24] Starnini M and Pastor-Satorras R 2014 Phys. Rev. E 89 032807
[25] Cui Y P, Ni S J and Shen S F 2021 Chin. Phys. B 30 048901
[26] Peng X L and Zhang Y D 2021 Chin. Phys. B 30 058901
[27] Hambridge H L, Kahn R and Onnela J P 2021 Int. J. Infect. Dis. 113 325
[28] https://www.webmd.com/covid/covid-recovery-overview
[29] Crépey P, Alvarez F P and Barthélemy M 2006 Phys. Rev. E 73 046131
[30] Shu P, Tang M, Gong K and Liu Y 2012 Chaos 22 043124
[31] Shu P, Wang W, Tang M and Do Y 2015 Chaos 25 063104
[32] Silva D H, Anteneodo C and Ferreira S C 2023 Commun. Nonlinear. Sci. Numer. Simula. 116 106877
[33] Landau D and Binder K 2009 A guide to Monte Carlo simulations in statistical physics, 3rd edn. (Cambridge University Press, New York)
[34] Nazarimehr F, Jafari S, Perc M and Sprott J C 2020 Europhys. Lett. 132 18001
[35] Southall E, Brett T S, Tildesley M J, Dyson L. 2021 J. R. Soc. Interface 18 20210555
[36] Due to the stochastic effect brought by the underlying networks and initial conditions (only one infected seed, see the 4-th step of the simulation procedure given in Subsection 2.3), r may be small even at large λ.
[1] Epidemic spreading on a scale-free network with awareness
Lu Yan-Ling (鲁延玲), Jiang Guo-Ping (蒋国平), Song Yu-Rong (宋玉蓉). Chin. Phys. B, 2012, 21(10): 100207.
[2] Epidemic spreading in scale-free networks including the effect of individual vigilance
Gong Yong-Wang(巩永旺), Song Yu-Rong(宋玉蓉), and Jiang Guo-Ping(蒋国平) . Chin. Phys. B, 2012, 21(1): 010205.
[3] Epidemic thresholds in a heterogenous population with competing strains
Wu Qing-Chu(吴庆初), Fu Xin-Chu(傅新楚), and Yang Meng(杨孟) . Chin. Phys. B, 2011, 20(4): 046401.
[4] Dynamical behaviour of an epidemic on complex networks with population mobility
Zhang Hai-Feng(张海峰), Small Michael, Fu Xin-Chu(傅新楚), and Wang Bing-Hong(汪秉宏). Chin. Phys. B, 2009, 18(9): 3639-3646.
[5] Epidemic spreading on networks with vaccination
Shi Hong-Jing(史红静), Duan Zhi-Sheng(段志生), Chen Guan-Rong(陈关荣), and Li Rong(李嵘). Chin. Phys. B, 2009, 18(8): 3309-3317.
[6] A dynamic epidemic control model on uncorrelated complex networks
Pei Wei-Dong(裴伟东), Chen Zeng-Qiang(陈增强), and Yuan Zhu-Zhi(袁著祉) . Chin. Phys. B, 2008, 17(2): 373-379.
No Suggested Reading articles found!