Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 026101    DOI: 10.1088/1674-1056/ad0626
DATA PAPER Prev   Next  

Databases of 2D material-substrate interfaces and 2D charged building blocks

Jun Deng(邓俊)1, Jinbo Pan(潘金波)1,2,3, and Shixuan Du(杜世萱)1,2,3,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Discovery of materials using "bottom-up" or "top-down" approach is of great interest in materials science. Layered materials consisting of two-dimensional (2D) building blocks provide a good platform to explore new materials in this respect. In van der Waals (vdW) layered materials, these building blocks are charge neutral and can be isolated from their bulk phase (top-down), but usually grow on substrate. In ionic layered materials, they are charged and usually cannot exist independently but can serve as motifs to construct new materials (bottom-up). In this paper, we introduce our recently constructed databases for 2D material-substrate interface (2DMSI), and 2D charged building blocks. For 2DMSI database, we systematically build a workflow to predict appropriate substrates and their geometries at substrates, and construct the 2DMSI database. For the 2D charged building block database, 1208 entries from bulk material database are identified. Information of crystal structure, valence state, source, dimension and so on is provided for each entry with a json format. We also show its application in designing and searching for new functional layered materials. The 2DMSI database, building block database, and designed layered materials are available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00188.
Keywords:  2D material-substrate interfaces      charged building block database      functional-oriented materials design      layered materials      density functional theory  
Received:  20 August 2023      Revised:  05 October 2023      Accepted manuscript online:  24 October 2023
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  61.68.+n (Crystallographic databases)  
  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  68.43.Fg (Adsorbate structure (binding sites, geometry))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61888102, 52272172, and 52102193), the Major Program of the National Natural Science Foundation of China (Grant No. 92163206), the National Key Research and Development Program of China (Grant Nos. 2021YFA1201501 and 2022YFA1204100), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000), and the Fundamental Research Funds for the Central Universities. Computational resources were provided by the National Supercomputing Center in Tianjin.
Corresponding Authors:  Shixuan Du     E-mail:  sxdu@iphy.ac.cn

Cite this article: 

Jun Deng(邓俊), Jinbo Pan(潘金波), and Shixuan Du(杜世萱) Databases of 2D material-substrate interfaces and 2D charged building blocks 2024 Chin. Phys. B 33 026101

[1] Ying T, Yu T, Shiah Y S, Li C, Li J, Qi Y and Hosono H 2021 J. Am. Chem. Soc. 143 7042
[2] Autere A, Jussila H, Dai Y, Wang Y, Lipsanen H and Sun Z 2018 Adv. Mater. 30 e1705963
[3] McKinney Robert W, Gorai P, Manna S, Toberer E and Stevanović V 2018 J. Mater. Chem. A 6 15828
[4] Zhou J, Shen L, Costa M D, Persson K A, Ong S P, Huck P, Lu Y, Ma X, Chen Y, Tang H and Feng Y P 2019 Sci. Data 6 86
[5] Ashton M, Paul J, Sinnott S B and Hennig R G 2017 Phys. Rev. Lett. 118 106101
[6] Gjerding M N, Taghizadeh A, Rasmussen A, Ali S, Bertoldo F, Deilmann T, Knosgaard N R, Kruse M, Larsen A H, Manti S, Pedersen T G, Petralanda U, Skovhus T, Svendsen M K, Mortensen J J, Olsen T and Thygesen K S 2021 2D Mater. 8 044002
[7] Pan J, Yu J, Zhang Y F, Du S, Janotti A, Liu C X and Yan Q 2020 npj Comput. Mater. 6 152
[8] Xie Y M, Zhang C P, Hu J X, Mak K F and Law K T 2022 Phys. Rev. Lett. 128 026402
[9] Guo H L, Zhang X and Lu G 2020 Sci. Adv. 6 eabc5638
[10] Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J and Kelly P J 2008 Phys. Rev. Lett. 101 026803
[11] Gao Y, Zhang Y Y and Du S 2019 J. Phys. Condens. Matter. 31 194001
[12] Yan J, Wu L, Ma R S, Zhu S, Bian C, Ma J, Huan Q, Bao L, Mao J, Du S and Gao H J 2019 2D Mater. 6 045050
[13] Cario L, Kabbour H and Meerschaut A 2005 Chem. Mater. 17 234
[14] Kabbour H, Cario L and Boucher F 2005 J. Mater. Chem. A 15 3525
[15] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K A 2013 APL Mater. 1 011002
[16] Zhang X L, Pan J, Jin X, Zhang Y F, Sun J T, Zhang Y Y and Du S 2021 Chin. Phys. Lett. 38 066801
[17] Cordero B, Gomez V, Platero-Prats A E, Reves M, Echeverria J, Cremades E, Barragan F and Alvarez S 2008 Dalton Trans. 2832
[18] Deng J, Pan J, Zhang Y F and Du S 2023 Nano Lett. 23 4634
[19] Bardeen J and Shockley W 1950 Phys. Rev. 80 72
[20] Xi J, Long M, Tang L, Wang D and Shuai Z 2012 Nanoscale 4 4348
[1] Plasmon-induced nonlinear response on gold nanoclusters
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(4): 044204.
[2] Local thermal conductivity of inhomogeneous nano-fluidic films: A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[3] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
[4] Structure, electronic, and nonlinear optical properties of superalkaline M3O (M = Li, Na) doped cyclo[18]carbon
Xiao-Dong Liu(刘晓东), Qi-Liang Lu(卢其亮), and Qi-Quan Luo(罗其全). Chin. Phys. B, 2024, 33(2): 023601.
[5] Epitaxial growth of ultrathin gallium films on Cd(0001)
Zuo Li(李佐), Mingxia Shi(石明霞), Gang Yao(姚钢), Minlong Tao(陶敏龙), and Junzhong Wang(王俊忠). Chin. Phys. B, 2024, 33(1): 018101.
[6] Physical mechanism of oxygen diffusion in the formation of Ga2O3 Ohmic contacts
Su-Yu Xu(徐宿雨), Miao Yu(于淼), Dong-Yang Yuan(袁东阳), Bo Peng(彭博), Lei Yuan(元磊), Yu-Ming Zhang(张玉明), and Ren-Xu Jia(贾仁需). Chin. Phys. B, 2024, 33(1): 017302.
[7] Two-dimensional dumbbell silicene as a promising anode material for (Li/Na/K)-ion batteries
Man Liu(刘曼), Zishuang Cheng(程子爽), Xiaoming Zhang(张小明), Yefeng Li(李叶枫), Lei Jin(靳蕾),Cong Liu(刘丛), Xuefang Dai(代学芳), Ying Liu(刘影), Xiaotian Wang(王啸天), and Guodong Liu(刘国栋). Chin. Phys. B, 2023, 32(9): 096303.
[8] Hydrogen evolution reaction between small-sized Zrn (n = 2–5) clusters and water based on density functional theory
Lei-Lei Tang(唐雷雷), Shun-Ping Shi(史顺平), Yong Song(宋永), Jia-Bao Hu(胡家宝), Kai Diao(刁凯), Jing Jiang(蒋静), Zhan-Jiang Duan(段湛江), and De-Liang Chen(陈德良). Chin. Phys. B, 2023, 32(6): 066106.
[9] Enhanced xylene sensing performance of hierarchical flower-like Co3O4 via In doping
Jing Zhang(张京), Jianyu Ling(凌剑宇), Kuikun Gu(谷魁坤), Georgiy G. Levchenko, and Xiao Liang(梁霄). Chin. Phys. B, 2023, 32(6): 068104.
[10] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[11] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[12] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[13] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[14] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[15] Activated dissociation of H2 on the Cu(001) surface: The role of quantum tunneling
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(10): 108103.
No Suggested Reading articles found!