Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 016303    DOI: 10.1088/1674-1056/acf660
Special Issue: SPECIAL TOPIC — Valleytronics
SPECIAL TOPIC—Valleytronics Prev   Next  

Optical spectrum of ferrovalley materials: A case study of Janus H-VSSe

Chao-Bo Luo(罗朝波), Wen-Chao Liu(刘文超), and Xiang-Yang Peng(彭向阳)
Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
Abstract  As opposed to the prototypical MoS2 with centroasymmetry, Janus ferrovalley materials such as H-VSSe are less symmetric with the mirror symmetry and time reversal symmetry broken, and hence possess spontaneous valley polarization and strong ferroelasticity. The optical transition is an important means to excite the valley carriers. We investigate the optical spectrum of H-VSSe by using the many-body perturbation-based GW approach and solving the Bethe—Salpeter equation (BSE) to include the electron—hole interactions. It is found that after the GW correction, the band gaps of the quasiparticle bands are much larger than those obtained by the normal density functional theory. The system is ferromagnetic and the valley gaps become non-degenerate due to spin—orbit coupling (SOC). The position of the lowest BSE peak is much lower than the quasiparticle band gap, indicating that the excitonic effect is large. The peak is split into two peaks by the SOC. The binding energy difference between these two BSE peaks is about the same as the difference between the inequivalent valley gaps. Our results show that in Janus H-VSSe the two lowest exciton peaks are from the two inequivalent valleys with different gaps, in contrast to the A and B exciton peaks of MoS2 which are from the same valley.
Keywords:  valleytronics      first-principles calculations      GW approach and Bethe—Salpeter equation (GW-BSE)      excitonic effects  
Received:  31 May 2023      Revised:  13 August 2023      Accepted manuscript online:  04 September 2023
PACS:  63.20.dk (First-principles theory)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.35.Cc (Intrinsic properties of excitons; optical absorption spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874315) and the Postgraduate Scientific Research Innovation Project of Hunan Province of China (Grant No. CX20220663).
Corresponding Authors:  Xiang-Yang Peng     E-mail:  xiangyang_peng@xtu.edu.cn

Cite this article: 

Chao-Bo Luo(罗朝波), Wen-Chao Liu(刘文超), and Xiang-Yang Peng(彭向阳) Optical spectrum of ferrovalley materials: A case study of Janus H-VSSe 2024 Chin. Phys. B 33 016303

[1] Schaibley J R, Yu H, Clark G, et al. 2016 Nat. Rev. Mater. 1 16055
[2] Choi W, Choudhary N, Han G H, et al. 2017 Mater. Today 20 116
[3] Liu G B, Xiao D, Yao Y, et al. 2015 Chem. Soc. Rev. 44 2643
[4] Qiu D Y, Da Jornada F H and Louie S G 2013 Phys. Rev. Lett. 111 216805
[5] Ramasubramaniam A 2012 Phys. Rev. B 86 115409
[6] Shi H, Pan H, Zhang Y W and Yakobson B I 2013 Phys. Rev. B 87 155304
[7] Srivastava A, Sidler M, Allain A V, et al. 2015 Nat. Phys. 11 141
[8] Liu W, Luo C, Tang X, et al. 2019 AIP Adv. 9 045222
[9] Peng R, Ma Y, Zhang S, et al. 2018 J. Phys. Chem. Lett. 9 3612
[10] Cheng Y C, Zhang Q Y and Schwingenschlögl U 2014 Phys. Rev. B 89 155429
[11] Qi J, Li X, Niu Q and Feng J 2015 Phys. Rev. B 92 121403
[12] Zhong D, Seyler K L, Linpeng X, et al. 2017 Sci. Adv. 3 e1603113
[13] Zhang A, Gong Z, Zhu Z, et al. 2020 Phys. Rev. B 102 155413
[14] Zhang A, Yang K, Zhang Y, et al. 2016 Nat. Commun. 7 13612
[16] Liu J, Hou W J, Cheng C, et al. 2017 J. Phys. Condens. Matter 29 255501
[17] Zhao P, Ma Y, Lei C, et al. 2019 Appl. Phys. Lett. 115 261605
[18] Cheng H, Zhou J, Ji W, et al. 2021 Phys. Rev. B 103 125121
[19] Zhao P, Dai Y, Wang H, et al. 2022 ChemPhysMater 1 56
[20] Hu H, Tong W Y, Shen Y H, et al. 2020 NPJ Comput. Mater. 6 1
[21] Peng R, Ma Y, Xu X, et al. 2020 Phys. Rev. B 102 035412
[22] Ding Y and Wang Y 2020 Nanoscale 12 1002
[23] Liang L, Yang Y, Wang X and Li X 2023 Nano Lett. 23 858
[24] Cui Q, Zhu Y, Liang J, et al. 2021 Phys. Rev. B 103 085421
[25] Luo C, Peng X, Qu J and Zhong J 2020 Phys. Rev. B 101 245416
[26] Li C and An Y 2022 Phys. Rev. B 106 115417
[27] Wang L, Lin Z and An Y 2021 J. Alloys Compd. 854 157141
[28] Zhang C, Nie Y, Sanvito S and Du A 2019 Nano Lett. 19 1366
[29] Qi S, Jiang J and Mi W 2020 Phys. Chem. Chem. Phys. 22 23597
[30] Zheng G, Zhang B, Duan H, et al. 2023 Physica E 148 115616
[31] Zhao Y F, Shen Y H, Hu H, et al. 2021 Phys. Rev. B 103 115124
[32] Yang J, Wang A, Zhang S, et al. 2018 Phys. Chem. Chem. Phys. 21 132
[33] Mak K F, Lee C, Hone J, et al. 2010 Phys. Rev. Lett. 105 136805
[34] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[37] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[38] Aryasetiawan F and Gunnarsson O 1998 Rep. Prog. Phys. 61 237
[39] Pizzi G, Vitale V, Arita R, et al. 2015 Phys. Rev. B 92 125146
[41] Thomas A and Jinesh K B 2022 ACS Omega 7 6531
[42] Lin Y, Ling X, Yu L, et al. 2014 Nano Lett. 14 5569
[43] Choi J H, Cui P, Lan H and Zhang Z 2015 Phys. Rev. Lett. 115 066403
[44] Harrison P and Valavanis A 2016 Quantum wells, wires and dots:theoretical and computational physics of semiconductor nanostructures 2nd edn. (Chichester:Wiley) p. 203
[45] Winkler R, Papadakis S, De Poortere E and Shayegan M 2003 Spin-orbit coupling in two-dimensional electron and hole systems (Berlin:Springer) p. 12
[1] Valley filtering and valley-polarized collective modes in bulk graphene monolayers
Jian-Long Zheng(郑建龙) and Feng Zhai(翟峰). Chin. Phys. B, 2024, 33(1): 017203.
[2] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[3] Quantum tunneling in the surface diffusion of single hydrogen atoms on Cu(001)
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(8): 086801.
[4] Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field
Yu Dong(董煜), Zhi-Gang Shao(邵志刚), Cang-Long Wang(王苍龙), and Lei Yang(杨磊). Chin. Phys. B, 2023, 32(8): 087101.
[5] Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations
Jing-Xuan Wang(王靖轩), Bao-Zhen Sun(孙宝珍), Mei Li(李梅), Mu-Sheng Wu(吴木生), and Bo Xu(徐波). Chin. Phys. B, 2023, 32(6): 068201.
[6] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[7] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[8] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[9] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[10] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[11] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[12] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[13] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[14] Two-dimensional transition metal halide PdX2(X= F, Cl, Br, I): A promising candidate of bipolar magnetic semiconductors
Miao-Miao Chen(陈苗苗), Sheng-Shi Li(李胜世), Wei-Xiao Ji(纪维霄), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(12): 127103.
[15] Structural, electronic and magnetic properties of Fe-doped strontium ruthenates
Nan Liu(刘楠), Xiao-Chao Wang(王晓超), and Liang Si(司良). Chin. Phys. B, 2023, 32(11): 117101.
No Suggested Reading articles found!