|
|
High-order harmonic generation of ZnO crystals in chirped and static electric fields |
Ling-Yu Zhang(张玲玉)1, Yong-Lin He(何永林)2,3, Zhuo-Xuan Xie(谢卓璇)1, Fang-Yan Gao(高芳艳)1, Qing-Yun Xu(徐清芸)1, Xin-Lei Ge(葛鑫磊)4, Xiang-Yi Luo(罗香怡)5,†, and Jing Guo(郭静)1,‡ |
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; 2 School of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000, China; 3 Institute of Theoretical Physics, Hexi University, Zhangye 734000, China; 4 College of Physical Science and Technology, Bohai University, Jinzhou 121013, China; 5 College of Physics and Electronic Information, Baicheng Normal University, Baicheng 137000, China |
|
|
Abstract High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation (SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved (k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.
|
Received: 23 July 2023
Revised: 07 September 2023
Accepted manuscript online: 18 September 2023
|
PACS:
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
31.15.-p
|
(Calculations and mathematical techniques in atomic and molecular physics)
|
|
31.15.xg
|
(Semiclassical methods)
|
|
Fund: This work was supported by the Natural Science Foundation of Jilin Province (Grant No. 20220101010JC) and the National Natural Science Foundation of China (Grant No. 12074146). |
Corresponding Authors:
Xiang-Yi Luo, Jing Guo
E-mail: luoxylgq@163.com;gjing@jlu.edu.cn
|
Cite this article:
Ling-Yu Zhang(张玲玉), Yong-Lin He(何永林), Zhuo-Xuan Xie(谢卓璇), Fang-Yan Gao(高芳艳), Qing-Yun Xu(徐清芸), Xin-Lei Ge(葛鑫磊), Xiang-Yi Luo(罗香怡), and Jing Guo(郭静) High-order harmonic generation of ZnO crystals in chirped and static electric fields 2024 Chin. Phys. B 33 013102
|
[1] Bian X B and Bandrauk A D 2009 Rev. Mod. Phys. 81 163 [3] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [4] Li L, Lan P F, Zhu X S, Huang T F, Zhang Q B, Lein M and Lu P X 2019 Nat. Phys. 122 193901 [5] Song X H, Yang S D, Zuo R X, Meier T and Yang W F 2020 Phys. Rev. A 101 033410 [6] Ciappina M F, Pérez-Hernández J A, Landsman A S, Okell W A, Zherebtsov S, Förg B, Schötz J, Seiffert L, Fennel T, Shaaran T, Zimmermann T, Chacón A, Guichard R, Zaïr A, Tisch J W G, Marangos J P, Witting T, Braun A, Maier S A, Roso L, Krüger M, Hommelhoff P, Kling M F, Krausz F and Lewenstein M 2017 Rep. Prog. Phys. 80 054401 [7] Chen J G, Zeng S L and Yang Y J 2010 Phys. Rev. A 82 043401 [8] Feng L and T Chu 2011 Phys. Rev. A 84 053853 [9] Koushki A M and Sarikhani S 2021 Chem. Phys. 541 111020 [10] Xiang Y, Niu Y P and Gong S Q 2009 Phys. Rev. A 79 053419 [11] Mohebbi M 2016 Appl. Phys. B 122 39 [12] Liu H, Feng L Q, Qiao Y and Li Y 2021 J. Mod. Opt. 68 267 [13] Vampa G and Brabec T 2017 J. Phys. B:At. Mol. Opt. Phys. 50 083001 [14] Vampa G, McDonald C R, Orlando G, Klug D D, Corkum P B and Brabec T 2014 Phys. Rev. Lett. 113 073901 [15] Du T Y, Tang D, Huang X H and Bian X B 2018 Phys. Rev. A 97 043413 [16] Ghimire S and Reis D A 2018 Nat. Phys. 15 10 [17] Yue L and Gaarde M B 2020 Phys. Rev. Lett. 124 153204 [18] He Y L, Guo J, Gao F Y, Yang Z J, Zhang S Q and Liu X S 2021 Phys. Rev. A 104 013104 [19] Wang X Q, Xu Y, Huang X H and Bian X B 2018 Phys. Rev. A 98 023427 [20] Hawkins P G, Ivanov M Y and Yakovlev V S 2015 Phys. Rev. A 91 013405 [21] Jin J Z, Xiao X R, Liang H j, Wang M, Chen S G, Gong Q H and Peng L Y 2018 Phys. Rev. A 97 043420 [22] Li J B, Zhang X, Yue S J, Wu H M, Hu B T and Du H C 2017 Opt. Express 25 18603 [23] Liu X, Zhu X S, Lan P F, Zhang X F, Wang D, Zhang Q B and Lu P X 2017 Phys. Rev. A 95 063419 [24] Mücke O D 2011 Phys. Rev. B 84 081202 [25] Wu M X, Ghimire S, Reis D A, Schafer K J and Gaarde M B 2015 Phys. Rev. A 91 043839 [26] Floss I, Lemell C, Wachter G, Smejkal V, Sato S A, Tong X M, Yabana K and Burgdörfer J 2018 Phys. Rev. A 97 011401 [27] Le Breton G, Rubio A and Tancogne-Dejean N 2018 Phys. Rev. B 98 165308 [28] Otobe T 2016 Phys. Rev. B 94 235152 [29] Tancogne-Dejean N, Mücke O D, Kärtner F X and Rubio A 2017 Nat. Commun. 8 745 [30] Tancogne-Dejean N, Mücke O D, Kärtner F X and Rubio A 2017 Phys. Rev. Lett. 118 087403 [31] Alam D, Ud Din N, Chini M and Turkowski V 2022 Phys. Rev. B 106 235124 [32] Golde D, Meier T and Koch S W 2008 Phys. Rev. B 77 075330 [33] Jiang S C, Chen J G, Wei H, Yu C, Lu R F and Lin C D 2018 Phys. Rev. Lett. 120 253201 [34] Jiang S C, Wei H, Chen J G, Yu C, Lu R F and Lin C D 2017 Phys. Rev. A 96 053850 [35] McDonald C R, Vampa G, Corkum P B and Brabec T 2015 Phys. Rev. A 92 033845 [36] Vampa G, Hammond T J, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T, Klug D D and Corkum P B 2015 Phys. Rev. Lett. 115 193603 [37] Wang G and Du T Y 2021 Phys. Rev. A 103 063109 [38] Qiao Y, Chen J Q, Huo Y Q, Liang H Q, Yu R X, Chen J G, Liu W J, Jiang S C and Yang Y J 2023 Phys. Rev. A 107 023523 [39] Du T Y, Tang D and Bian X B 2018 Phys. Rev. A 98 063416 [40] Shao T J, Lü L J, Liu J Q and Bian X B 2020 Phys. Rev. A 101 053421 [41] Lang Y, Peng Z Y and Zhao Z X 2022 Chin. Phys. Lett. 39 114201 [42] Borca B, Flegel A V, Frolov M V, Manakov N L, Milošević D B and Starace A F 2000 Phys. Rev. Lett. 85 732 [43] Hong W Y, Lu P X, Cao W, Lan P F and Wang X L 2007 J. Phys. B:At. Mol. Opt. Phys. 40 2321 [44] Zhang H D, Liu X W, Jin F C, Zhu M, Yang S D, Dong W H, Song X H and Yang W F 2021 Chin. Phys. Lett. 38 063201 [45] Xu J J, Zeng B and Yu Y L 2017 Phys. Rev. A 82 053822 [46] Peng D, Frolov M V, Pi L W and Starace A F 2018 Phys. Rev. A 97 053414 [47] Feng L Q and Liu H 2022 Chem. Phys. Lett. 791 139398 [48] You Y S, Wu M X, Yin Y C, Chew A, Ren X M, Gholam-Mirzaei S, Browne D A, Chini M, Chang Z H, Schafer K J, Gaarde M B and Ghimire S 2017 Opt. Lett. 42 1816 [49] Zhang X, Li J B, Zhou Z S, Yue S J, Du H C, Fu L B and Luo H G 2019 Phys. Rev. B 99 014304 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|