|
|
Ab initio potential energy surface and anharmonic vibration spectrum of NF3+ |
Yan-Nan Chen(陈艳南), Jian-Gang Xu(徐建刚)†, Jiang-Peng Fan(范江鹏), Shuang-Xiong Ma(马双雄), Tian Guo(郭甜), and Yun-Guang Zhang(张云光)‡ |
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China |
|
|
Abstract Potential energy surfaces (PESs), vibrational frequencies, and infrared spectra are calculated for NF3+ using ab initio calculations, based on UCCSD(T)/cc-pVTZ combined with vibrational configuration interaction (VCI). Based on an iterative algorithm, the surfaces (SURF) program adds automatic points to the lattice representation of the potential function, the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold, finally the smooth image of the potential energy surface is fitted. The PESs accurately account for the interaction between the different modes, with the mode q6 symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift. The anharmonic frequencies are obtained when the VCI matrix is diagonalized. Fundamental frequencies, overtones, and combination bands of NF3+ are calculated, which generate the degenerate phenomenon between their frequencies. Finally, the calculated anharmonic frequency is used to plot the infrared spectra. Modal antisymmetric stretching ν5 and symmetric stretching ν6 exhibit a phenomenon of large-intensity borrowing. This study can provide data to support the characterization in the laboratory.
|
Received: 01 August 2023
Revised: 24 September 2023
Accepted manuscript online: 19 October 2023
|
PACS:
|
31.15.A-
|
(Ab initio calculations)
|
|
31.50.Bc
|
(Potential energy surfaces for ground electronic states)
|
|
33.20.Ea
|
(Infrared spectra)
|
|
33.20.Tp
|
(Vibrational analysis)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52002318 and 22103061). |
Corresponding Authors:
Jian-Gang Xu, Yun-Guang Zhang
E-mail: xjgo@xupt.edu.cn;zygsr2010@163.com
|
Cite this article:
Yan-Nan Chen(陈艳南), Jian-Gang Xu(徐建刚), Jiang-Peng Fan(范江鹏), Shuang-Xiong Ma(马双雄), Tian Guo(郭甜), and Yun-Guang Zhang(张云光) Ab initio potential energy surface and anharmonic vibration spectrum of NF3+ 2024 Chin. Phys. B 33 013101
|
[1] Weiss R F, Mühle J, Salameh P K and Harth C M 2008 Geophys. Res. Lett. 35 L20821 [2] Egorov O, Nikitin A, Rey M, Rodina A, Tashkun S and Tyuterev V 2019 J. Quant. Spectrosc. Radiat. Transfer 239 106668 [3] Breidung J, Constantin L, Demaison J, MarguléS L and Thiel W 2003 Mol. Phys. 101 1113 [4] Najib H 2013 Sci. World 2013 813249 [5] Reese R M and Dibeler V H 2004 J. Chem. Phys. 24 1175 [6] Christe K O and Goldberg I B 1978 Inorg. Chem. 17 759 [7] Seccombe D P, Jarvis G K, Fisher B O and Tuckett R P 1999 Chem. Phys. 250 335 [8] Berkowitz J and Greene J 1984 J. Chem. Phys. 81 3383 [9] Curtiss L A 1987 Chem. Phys. Lett. 136 566 [10] Nguyen M T and Ha T K 1986 Chem. Phys. Lett. 123 537 [11] Pouchan C 1985 Chem. Phys. Lett. 117 326 [12] Wilson E B, Decius J C, Cross P C and Sundheim B R 1955 J. Electrochem. Soc. 102 235 [13] Aroca R F 2015 Structure Elucidation in Organic Chemistry (Weinheim:Wiley-VCH Verlag) p. 145 [14] Ricardo A 2006 Surface-Enhanced Vibrational Spectroscopy (New Jersey:John Wiley & Sons, Ltd) p. 185 [15] Čársky P and Urban M 1980 Ab Initio Calculations:Methods and Applications in Chemistry (Berlin:Springer) p. 1 [16] Rauhut G 2004 J. Chem. Phys. 121 9313 [17] Paukku Y, Yang K R, Varga Z and Truhlar D G 2013 J. Chem. Phys. 139 044309 [18] Hrenar T, Werner H J and Rauhut G 2007 J. Chem. Phys. 126 134108 [19] Purvis G D III and Bartlett R J 1982 J. Chem. Phys. 76 1910 [20] Hansen M B, Sparta M, Seidler P, Toffoli D and Christiansen O 2010 J. Chem. Theory Comput. 6 235 [21] Jelski D A, Haley R H and Bowman J M 1996 Comput. Chem. 17 1645 [22] Bowman J M 1986 Acc. Chem. Res. 19 202 [23] Gerber R B and Ratner M A 1988 Advances in Chemical Physics (New Jersey:John Wiley & Sons, Ltd) p. 97 [24] Bihary Z, Gerber R B and Apkarian V A 2001 J. Chem. Phys. 115 2695 [25] Carter S, Bowman J M and Handy N C 1998 Theor. Chem. Acc. 100 191 [26] Bowman J M, Christoffel K M and Tobin F 1979 J. Phys. Chem. 83 905 [27] Christoffel K M and Bowman J M 1982 Chem. Phys. Lett. 85 220 [28] Christiansen O 2004 J. Chem. Phys. 120 2149 [29] Christiansen O 2003 J. Chem. Phys. 119 5773 [30] Norris L S, Ratner M A, Roitberg A E and Gerber R B 1996 J. Chem. Phys. 105 11261 [31] Christiansen O 2004 J. Chem. Phys. 120 2140 [32] Barone V 2005 J. Chem. Phys. 122 14108 [33] Barone V, Bloino J, Guido C A and Lipparini F 2010 Chem. Phys. Lett. 496 157 [34] Bowman J M 1978 J. Chem. Phys. 68 608 [35] Gerber R B and Ratner M A 1979 Chem. Phys. Lett. 68 195 [36] Carney G D, Sprandel L L and Kern C W 1978 Advances in Chemical Physics (New Jersey:John Wiley & Sons, Ltd) p. 305 [37] Mück-Lichtenfeld C 2003 Angew. Chem. Int. Ed. 42 21 [38] Romanowski H, Bowman J M and Harding L B 1985 J. Chem. Phys. 82 4155 [39] Thompson T C and Truhlar D G 1980 Chem. Phys. Lett. 75 87 [40] Neff M, Hrenar T, Oschetzki D and Rauhut G 2011 J. Chem. Phys. 134 064105 [41] Neff M and Rauhut G 2009 J. Chem. Phys. 131 124129 [42] Rauhut G and Hrenar T 2008 Chem. Phys. 346 160 [43] Carvalho J R and Vidal L N 2022 J. Comput. Chem. 43 1484 [44] Seidler P, Kongsted J and Christiansen O 2007 J. Phys. Chem. A 111 11205 [45] Carvalho J R d 2021 Estudo do espectro Raman vibracional anarmÔnico de sistemas moleculares isolados através dos métodos VSCF e VCI (Ph.D. Dissertation) (Brazil:Universidade Tecnológica Federal do Paraná) [46] Tan J A and Kuo J L 2018 J. Chem. Theory Comput. 14 6405 [47] Werner H J, Knowles P J, Manby F R, et al. 2020 J. Chem. Phys. 152 144107 [48] Carter S and Handy N C 2002 Chem. Phys. Lett. 352 1 [49] Carter S, Bowman J M and Harding L B 1997 Spectrochim. Acta A 53 1179 [50] Carter S and Bowman J M 1998 J. Chem. Phys. 108 4397 [51] Bounouar M 2008 Theoretical Study of Anharmonic Vibrational Modes and Couplings with the VSCF Algorithm (Ph.D. Dissertation) (München:Fakultat fur Chemie) [52] Miller Y, Chaban G M and Gerber R B 2005 Chem. Phys. 313 213 [53] Shimanouchi T 1972 Tables of molecular vibrational frequencies (Washington, DC:National Bureau of Standards) Vol. 1 p. 15 [54] Huber K P and Herzberg G 1979 Molecular spectra and molecular structure:IV Constants of diatomic molecules (New York:Springer) p. 214 [55] Johnson R D 2006 NIST computational chemistry comparison and benchmark database[July 30, 2023] Available at http://srdata.nist.gov/cccbdb |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|