Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 013101    DOI: 10.1088/1674-1056/ad04c6
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Ab initio potential energy surface and anharmonic vibration spectrum of NF3+

Yan-Nan Chen(陈艳南), Jian-Gang Xu(徐建刚), Jiang-Peng Fan(范江鹏), Shuang-Xiong Ma(马双雄), Tian Guo(郭甜), and Yun-Guang Zhang(张云光)
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Abstract  Potential energy surfaces (PESs), vibrational frequencies, and infrared spectra are calculated for NF3+ using ab initio calculations, based on UCCSD(T)/cc-pVTZ combined with vibrational configuration interaction (VCI). Based on an iterative algorithm, the surfaces (SURF) program adds automatic points to the lattice representation of the potential function, the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold, finally the smooth image of the potential energy surface is fitted. The PESs accurately account for the interaction between the different modes, with the mode q6 symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift. The anharmonic frequencies are obtained when the VCI matrix is diagonalized. Fundamental frequencies, overtones, and combination bands of NF3+ are calculated, which generate the degenerate phenomenon between their frequencies. Finally, the calculated anharmonic frequency is used to plot the infrared spectra. Modal antisymmetric stretching ν5 and symmetric stretching ν6 exhibit a phenomenon of large-intensity borrowing. This study can provide data to support the characterization in the laboratory.
Keywords:  ab initio methods      potential energy surfaces      vibration frequencies      coupled resonance      infrared spectra  
Received:  01 August 2023      Revised:  24 September 2023      Accepted manuscript online:  19 October 2023
PACS:  31.15.A- (Ab initio calculations)  
  31.50.Bc (Potential energy surfaces for ground electronic states)  
  33.20.Ea (Infrared spectra)  
  33.20.Tp (Vibrational analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52002318 and 22103061).
Corresponding Authors:  Jian-Gang Xu, Yun-Guang Zhang     E-mail:  xjgo@xupt.edu.cn;zygsr2010@163.com

Cite this article: 

Yan-Nan Chen(陈艳南), Jian-Gang Xu(徐建刚), Jiang-Peng Fan(范江鹏), Shuang-Xiong Ma(马双雄), Tian Guo(郭甜), and Yun-Guang Zhang(张云光) Ab initio potential energy surface and anharmonic vibration spectrum of NF3+ 2024 Chin. Phys. B 33 013101

[1] Weiss R F, Mühle J, Salameh P K and Harth C M 2008 Geophys. Res. Lett. 35 L20821
[2] Egorov O, Nikitin A, Rey M, Rodina A, Tashkun S and Tyuterev V 2019 J. Quant. Spectrosc. Radiat. Transfer 239 106668
[3] Breidung J, Constantin L, Demaison J, MarguléS L and Thiel W 2003 Mol. Phys. 101 1113
[4] Najib H 2013 Sci. World 2013 813249
[5] Reese R M and Dibeler V H 2004 J. Chem. Phys. 24 1175
[6] Christe K O and Goldberg I B 1978 Inorg. Chem. 17 759
[7] Seccombe D P, Jarvis G K, Fisher B O and Tuckett R P 1999 Chem. Phys. 250 335
[8] Berkowitz J and Greene J 1984 J. Chem. Phys. 81 3383
[9] Curtiss L A 1987 Chem. Phys. Lett. 136 566
[10] Nguyen M T and Ha T K 1986 Chem. Phys. Lett. 123 537
[11] Pouchan C 1985 Chem. Phys. Lett. 117 326
[12] Wilson E B, Decius J C, Cross P C and Sundheim B R 1955 J. Electrochem. Soc. 102 235
[13] Aroca R F 2015 Structure Elucidation in Organic Chemistry (Weinheim:Wiley-VCH Verlag) p. 145
[14] Ricardo A 2006 Surface-Enhanced Vibrational Spectroscopy (New Jersey:John Wiley & Sons, Ltd) p. 185
[15] Čársky P and Urban M 1980 Ab Initio Calculations:Methods and Applications in Chemistry (Berlin:Springer) p. 1
[16] Rauhut G 2004 J. Chem. Phys. 121 9313
[17] Paukku Y, Yang K R, Varga Z and Truhlar D G 2013 J. Chem. Phys. 139 044309
[18] Hrenar T, Werner H J and Rauhut G 2007 J. Chem. Phys. 126 134108
[19] Purvis G D III and Bartlett R J 1982 J. Chem. Phys. 76 1910
[20] Hansen M B, Sparta M, Seidler P, Toffoli D and Christiansen O 2010 J. Chem. Theory Comput. 6 235
[21] Jelski D A, Haley R H and Bowman J M 1996 Comput. Chem. 17 1645
[22] Bowman J M 1986 Acc. Chem. Res. 19 202
[23] Gerber R B and Ratner M A 1988 Advances in Chemical Physics (New Jersey:John Wiley & Sons, Ltd) p. 97
[24] Bihary Z, Gerber R B and Apkarian V A 2001 J. Chem. Phys. 115 2695
[25] Carter S, Bowman J M and Handy N C 1998 Theor. Chem. Acc. 100 191
[26] Bowman J M, Christoffel K M and Tobin F 1979 J. Phys. Chem. 83 905
[27] Christoffel K M and Bowman J M 1982 Chem. Phys. Lett. 85 220
[28] Christiansen O 2004 J. Chem. Phys. 120 2149
[29] Christiansen O 2003 J. Chem. Phys. 119 5773
[30] Norris L S, Ratner M A, Roitberg A E and Gerber R B 1996 J. Chem. Phys. 105 11261
[31] Christiansen O 2004 J. Chem. Phys. 120 2140
[32] Barone V 2005 J. Chem. Phys. 122 14108
[33] Barone V, Bloino J, Guido C A and Lipparini F 2010 Chem. Phys. Lett. 496 157
[34] Bowman J M 1978 J. Chem. Phys. 68 608
[35] Gerber R B and Ratner M A 1979 Chem. Phys. Lett. 68 195
[36] Carney G D, Sprandel L L and Kern C W 1978 Advances in Chemical Physics (New Jersey:John Wiley & Sons, Ltd) p. 305
[37] Mück-Lichtenfeld C 2003 Angew. Chem. Int. Ed. 42 21
[38] Romanowski H, Bowman J M and Harding L B 1985 J. Chem. Phys. 82 4155
[39] Thompson T C and Truhlar D G 1980 Chem. Phys. Lett. 75 87
[40] Neff M, Hrenar T, Oschetzki D and Rauhut G 2011 J. Chem. Phys. 134 064105
[41] Neff M and Rauhut G 2009 J. Chem. Phys. 131 124129
[42] Rauhut G and Hrenar T 2008 Chem. Phys. 346 160
[43] Carvalho J R and Vidal L N 2022 J. Comput. Chem. 43 1484
[44] Seidler P, Kongsted J and Christiansen O 2007 J. Phys. Chem. A 111 11205
[45] Carvalho J R d 2021 Estudo do espectro Raman vibracional anarmÔnico de sistemas moleculares isolados através dos métodos VSCF e VCI (Ph.D. Dissertation) (Brazil:Universidade Tecnológica Federal do Paraná)
[46] Tan J A and Kuo J L 2018 J. Chem. Theory Comput. 14 6405
[47] Werner H J, Knowles P J, Manby F R, et al. 2020 J. Chem. Phys. 152 144107
[48] Carter S and Handy N C 2002 Chem. Phys. Lett. 352 1
[49] Carter S, Bowman J M and Harding L B 1997 Spectrochim. Acta A 53 1179
[50] Carter S and Bowman J M 1998 J. Chem. Phys. 108 4397
[51] Bounouar M 2008 Theoretical Study of Anharmonic Vibrational Modes and Couplings with the VSCF Algorithm (Ph.D. Dissertation) (München:Fakultat fur Chemie)
[52] Miller Y, Chaban G M and Gerber R B 2005 Chem. Phys. 313 213
[53] Shimanouchi T 1972 Tables of molecular vibrational frequencies (Washington, DC:National Bureau of Standards) Vol. 1 p. 15
[54] Huber K P and Herzberg G 1979 Molecular spectra and molecular structure:IV Constants of diatomic molecules (New York:Springer) p. 214
[55] Johnson R D 2006 NIST computational chemistry comparison and benchmark database[July 30, 2023] Available at http://srdata.nist.gov/cccbdb
[1] Finite element simulation of Love wave sensor for the detection of volatile organic gases
Yan Wang(王艳), Su-Peng Liang(梁苏鹏), Shu-Lin Shang(商树林),Yong-Bing Xiao(肖勇兵), and Yu-Xin Yuan(袁宇鑫). Chin. Phys. B, 2022, 31(3): 030701.
[2] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[3] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[4] Comparative calculation on Li+ solvation in common organic electrolyte solvents for lithium ion batteries
Qi Liu(刘琦), Feng Wu(吴锋), Daobin Mu(穆道斌), Borong Wu(吴伯荣). Chin. Phys. B, 2020, 29(4): 048202.
[5] Improvement of laser damage thresholds of fused silica by ultrasonic-assisted hydrofluoric acid etching
Yuan Li(李源), Hongwei Yan(严鸿维), Ke Yang(杨科), Caizhen Yao(姚彩珍), Zhiqiang Wang(王志强), Chunyan Yan(闫春燕), Xinshu Zou(邹鑫书), Xiaodong Yuan(袁晓东), Liming Yang(杨李茗), Xin Ju(巨新). Chin. Phys. B, 2017, 26(11): 118104.
[6] Spectral distortion of dual-comb spectrometry due to repetition rate fluctuation
Hong-Lei Yang(杨宏雷), Hao-Yun Wei(尉昊赟), Yan Li(李岩). Chin. Phys. B, 2016, 25(4): 044207.
[7] Modeling the temperature-dependent peptide vibrational spectra based on implicit-solvent model and enhance sampling technique
Tianmin Wu (吴天敏), Tianjun Wang (王天骏), Xian Chen(陈娴), Bin Fang(方彬), Ruiting Zhang(张睿挺), Wei Zhuang(庄巍). Chin. Phys. B, 2016, 25(1): 018201.
[8] The near-infrared spectra and distribution of excited states of electrodeless discharge rubidium vapour lamps
Sun Qin-Qing(孙钦青), Miao Xin-Yu(缪新育) Sheng Rong-Wu(盛荣武), and Chen Jing-Biao(陈景标) . Chin. Phys. B, 2012, 21(3): 033201.
[9] Density functional study on chirospectra of hydrogen-bonded systems X-(H2O) 3 (X = F,Cl,Br,I)
Mang Chao-Yong(莽朝永),Li Zhen-Gui(李珍贵), and Wu Ke-Chen(吴克琛). Chin. Phys. B, 2010, 19(4): 043601.
[10] Evaluation of electron--electron interactions in coupled quantum dots by using far-infrared spectra
Dong Qing-Rui(董庆瑞). Chin. Phys. B, 2008, 17(4): 1400-1404.
[11] A new analysis of the $\nu_2$ fundamental band of H2O+
Zheng Rui (郑锐), Li Song (李松), Hou Shun-Yong (侯顺永), Huang Guang-Ming (黄光明), Duan Chuan-Xi (段传喜). Chin. Phys. B, 2008, 17(12): 4485-4491.
No Suggested Reading articles found!