Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018201    DOI: 10.1088/1674-1056/25/1/018201
Special Issue: TOPICAL REVIEW — 8th IUPAP International Conference on Biological Physics
TOPICAL REVIEW—8th IUPAP International Conference on Biological Physics Prev   Next  

Modeling the temperature-dependent peptide vibrational spectra based on implicit-solvent model and enhance sampling technique

Tianmin Wu (吴天敏)1, Tianjun Wang (王天骏)2, Xian Chen(陈娴)2, Bin Fang(方彬)2, Ruiting Zhang(张睿挺)2, Wei Zhuang(庄巍)2
1. Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China;
2. State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian 116023, China
Abstract  

We herein review our studies on simulating the thermal unfolding Fourier transform infrared and two-dimensional infrared spectra of peptides. The peptide-water configuration ensembles, required forspectrum modeling, aregenerated at a series of temperatures using the GBOBC implicit solvent model and the integrated tempering sampling technique. The fluctuating vibrational Hamiltonians of the amide I vibrational band are constructed using the Frenkel exciton model. The signals are calculated using nonlinear exciton propagation. The simulated spectral features such as the intensity and ellipticity are consistent with the experimental observations. Comparing the signals for two beta-hairpin polypeptides with similar structures suggests that this technique is sensitive to peptide folding landscapes.

Keywords:  peptide      two-dimensional infrared spectra (2DIR)      folding landscape      implicit solvent model  
Received:  29 April 2015      Accepted manuscript online: 
PACS:  87.15.ap (Molecular dynamics simulation)  
  87.15.M- (Spectra of biomolecules)  
  82.20.Wt (Computational modeling; simulation)  
  87.64.-t (Spectroscopic and microscopic techniques in biophysics and medical physics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 21203178), the National Natural Science Foundation of China (Grant No. 21373201), the National Natural Science Foundation of China (Grant No. 21433014), the Science and Technological Ministry of China (Grant No. 2011YQ09000505), and “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant Nos. XDB10040304 and XDB100202002).

Corresponding Authors:  Wei Zhuang     E-mail:  wzhuang@dicp.ac.cn

Cite this article: 

Tianmin Wu (吴天敏), Tianjun Wang (王天骏), Xian Chen(陈娴), Bin Fang(方彬), Ruiting Zhang(张睿挺), Wei Zhuang(庄巍) Modeling the temperature-dependent peptide vibrational spectra based on implicit-solvent model and enhance sampling technique 2016 Chin. Phys. B 25 018201

[1] Frauenfelder H, Sligar S G and Wolynes P G 1991 Science 254 1598
[2] Huang C Y, Getahun Z, Zhu Y J, Klemke J W, DeGrado, William F and Gai F 2002 Proc. Natl. Acad. Sci. 99 2788
[3] Dill K A, Ozkan S B, Shell M S and Weikl T R 2008 Annu. Rev. Biophys. 37 289
[4] Gruebele M 1999 Annu. Rev. Phys. Chem. 50 485
[5] Anfinsen C B and Scheraga H A 1975 Adv. Protein Chem. 29 205
[6] Kubelka J, Hofrichter J and Eaton W A 2004 Curr. Opin. Struct. Biol. 14 76
[7] Xu Y, Purkayastha P and Gai F 2006 J. Am. Chem. Soc. 128 15836
[8] Mantsch H H and Chapman D 1996 Infrared Spectroscopy of Biomolecules (New York: Wiley-Liss) p. 35
[9] Hahn S, Ham S and Cho M 2005 J. Phys. Chem. B 109 11789
[10] Jansen T L C and Knoester J 2008 Biophys. J. 94 1818
[11] Yuguang, Daniil S K and Gerhard S 2003 J. Phys. Chem. B 107 5064
[12] Wang L and Skinner J L 2012 J. Phys. Chem. B 116 9627
[13] Santanu R, Thomas L C J and Jasper K 2010 Phys. Chem. Chem. Phys. 12 9347
[14] Yung S K and Robin M H 2007 J. Phys. Chem. B 111 9697
[15] Ganim Z, Chung H S, Smith A, DeFlores L P, Jones K C and Tokmakoff A 2008 Acc. Chem. Res. 41 432
[16] Torii H and Tasumi M 1998 J. Raman Spectrosc. 29 81
[17] Krimm S and Bandekar J 1986 Adv. Protein Chem. 38 181
[18] Hamm P, Lim M and Hochstrasser R M 1998 J. Phys. Chem. B 102 6123
[19] Zhuang W, Hayashi T and Mukamel S 2009 Angew. Chem. Int. Ed. 48 3750
[20] Jansen T L and Knoester J 2006 J. Chem. Phys. 124 044502
[21] Minhaeng C 2008 Chem. Rev. 108 1331
[22] Asplund M C, Zanni M T and Hochstrasser R M 2000 Proc. Natl. Acad. Sci. 97 8219
[23] Mukamel S and Darius A 2004 Chem. Rev. 104 2073
[24] Wang J P 2008 J. Phys. Chem. B 112 4790
[25] Zheng J R, Kwak K and Fayer M D 2006 Acc. Chem. Res. 40 75
[26] Ilya J F, Haruto I, Seongheun K, Aaron M M and Fayer M D 2007 Proc. Nat. Acad. Sci. 104 2637
[27] Smith A and Tokmakoff A 2007 Angew. Chem. Int. Ed. 46 7984
[28] Tucker M J, Tang J and Gai F 2006 J. Phys. Chem. B 110 8105
[29] Girdhar K, Scott G, Chemla Y and Gruebele M 2011 J. Chem. Phys. 135 015102
[30] Du D G, Zhu Y J, Huang C Y and Gai F 2004 Proc. Natl. Acad. Sci. 101 15915
[31] Martin G 2010 Nature 468 640
[32] Serrano A L, Waegele M M and Gai F 2012 Protein Science 21 157
[33] Sangeeta B, Shikha V, RÖhm K H and Olga G 2006 Protein Sci. 15 635
[34] Du D G, Zhu Y J, Huang C Y and Gai F 2004 Proc. Natl. Acad. Sci. 101 15915
[35] Kevin C J, Chunte S P and Andrei T 2013 Proc. Natl. Acad. Sci. 110 2828
[36] Song J, Gao F, Cui R Z, Shuang F, Liang W Z, Huang X H and Zhuang W 2012 J. Phys. Chem. B 116 12669
[37] Zhuang W, Cui R Z, Sliva D A and Huang X H 2011 J. Phys. Chem. B 115 5415
[38] Wu T M, Yang L J, Zhang R T; Shao Q and Zhuang W 2013 J. Phys. Chem. A 117 6256
[39] Wu T M, Zhang R T, Li H H, Yang L J and Zhuang W 2014 J. Chem. Phys. 140 055101
[40] Christian B and Martin K 1998 J. Phys. Chem. B 102 865
[41] Sugitaa Y and Okamoto Y 1999 Chem. Phys. Lett. 314 141
[42] Bernd A B and Thomas N 1991 Phys. Lett. B 267 249
[43] Eric D, Michael A W and Andrew P 2002 Molecular Simulation 28 113
[44] Gao Y Q 2008 J. Chem. Phys. 128 064105
[45] Shao Q and Gao Y Q 2010 J. Chem. Theory Comput. 6 3750
[46] Yang L J, Shao Q and Gao Y Q 2009 J. Phys. Chem. B 113 803
[47] Shao Q, Yang L J and Gao Y Q 2009 J. Chem. Phys. 130 195104
[48] Adam W S, Joshua L, ZiadGanim, Chunte S P, Andrei T, Santanu R, Thomas L C J and Jasper K 2010 J. Phys. Chem. B 114 10913
[49] Benoît R and Thomas S 1999 Biophys. Chem. 78 1
[50] Still W C, Tempczyk A, Hawley R C and Hendrickson T 1990 J. Am. Chem. Soc. 112 6127
[51] Onufriev A, Bashford D and Case D A 2004 Proteins 55 383
[52] Shao Q, Wei H Y and Gao Y Q 2010 J. Mol. Biol. 402 595
[53] Yang L J, Shao Q and Gao Y Q 2009 J. Chem. Phys. 130 124111
[54] Jansen T L C, Dijkstra A G, Watson T M, Hirst J D and Knoester J 2006 J. Chem. Phys. 125 044312
[55] Jansen T L C and Knoester J 2006 J. Phys. Chem. B 110 22910
[56] Ham S and Minhaeng C 2003 J. Chem. Phys. 118 6915
[57] Adam W and Smith A T 2007 J. Chem. Phys. 126 045109
[58] Mukamel S 1995 Principles of Nonlinear Optical Spectroscopy (New York: Oxford University Press) pp. 111-135
[59] Abramavicius D, Palmieri B, Voronine D, Sanda F and Mukamel S 2009 Chem. Rev. 109 2350
[60] Falvo C, Palmieri B and Mukamel S 2009 J. Chem. Phys. 130 184501
[61] Schmidt J R, Corcelli S A and Skinner J L 2004 J. Chem. Phys. 121 8887
[62] Bour P, Sopkova J, Bednarova L, Malon P and Keiderling T A 1997 J. Comput. Chem. 18 646
[63] Moran A, Park S M, Dreyer J and Mukamel S 2003 J. Chem. Phys. 118 3651
[64] Wang J P and Robin M H 2004 Chem. Phys. 297 195
[65] Kubelka J and Keiderling T A 2001 J. Am. Chem. Soc. 123 12048
[66] Ruud K, Helgaker T and Bour P 2002 J. Phys. Chem. A 106 7448
[67] Besley N A 2004 J. Phys. Chem. A 108 10794
[68] Hayashi T and Mukamel S 2006 J. Chem. Phys. 125 194510
[69] Myshakina N S and Asher S A 2007 J. Phys. Chem. B 111 4271
[70] Hayashi T and Mukamel S 2007 J. Phys. Chem. B 111 11032
[71] Hamm P and Woutersen S 2002 Chem. Soc. Jpn. 75 985
[72] Choi J H and Cho M 2004 J. Chem. Phys. 120 4383
[73] Jansen T L, Dijkstra A G, Watson T M, Hirst J D and Knoester J 2012 J. Chem. Phys. 136 209901
[74] Brauner J W, Flach C R and Mendelsohn R 2005 J. Am. Chem. Soc. 127 100
[75] Brauner J W, Dugan C and Mendelsohn R 2000 J. Am. Chem. Soc. 122 677
[76] Hayashi T, Zhuang W and Mukamel S 2005 J. Phys. Chem. A 109 9747
[77] Lee C, Park K H and Cho M 2006 J. Chem. Phys. 125 114508
[78] Ham S, Cha S, Choi J H and Cho M 2003 J. Chem. Phys. 119 1451
[79] Choi J H, Ham S and Cho M 2003 J. Phys. Chem. B 107 9132
[80] Zhuang W, Abramavicius D, Hayashi T and Mukamel S 2006 J. Phys. Chem. B 110 3362
[81] Cochran A G, Skelton N J and Starovasnik M 2001 Proc. Natl. Acad. Sci. 98 5578
[82] Soyoun H and Christian H 2011 J. Phys. Chem. B 115 15355
[83] Hugh N 2009 J. Phys. Chem. B 113 8288
[84] Deguo D, Matthew J T and Feng G 2006 Biochemistry 45 2668
[85] Loparo J J, Roberts S T and Tokmakoff A 2006 J. Chem. Phys. 125 194522
[86] Lazonder K, Pshenichnikov M S and Wiersma D A 2006 Opt. Lett. 22 3354
[1] Twisting mode of supercoil leucine-rich domain mediates peptide sensing in FLS2–flg22–BAK1 complex
Zhi-Chao Liu(刘志超), Qin Liu(刘琴), Chan-You Chen(陈禅友), Chen Zeng(曾辰), Peng Ran(冉鹏), Yun-Jie Zhao(赵蕴杰)†, and Lei Pan(潘磊)‡. Chin. Phys. B, 2020, 29(10): 108709.
[2] Anisotropic formation mechanism and nanomechanics for the self-assembly process of cross-β peptides
Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋). Chin. Phys. B, 2017, 26(12): 128701.
[3] Modulation of intra- and inter-sheet interactions in short peptide self-assembly by acetonitrile in aqueous solution
Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋). Chin. Phys. B, 2016, 25(12): 128704.
[4] Hierarchical processes in β -sheet peptide self-assembly from the microscopic to the mesoscopic level
Li Deng(邓礼) and Hai Xu(徐海). Chin. Phys. B, 2016, 25(1): 018701.
[5] Reweighted ensemble dynamics simulations: Theory, improvement, and application
Gong Lin-Chen (龚麟宸), Zhou Xin (周昕), Ouyang Zhong-Can (欧阳钟灿). Chin. Phys. B, 2015, 24(6): 060202.
[6] The construction of general basis functions in reweighting ensemble dynamics simulations: Reproduce equilibrium distribution in complex systems from multiple short simulation trajectories
Zhang Chuan-Biao (张传彪), Li Ming (黎明), Zhou Xin (周昕). Chin. Phys. B, 2015, 24(12): 120202.
[7] Dynamic mechanism for encapsulating two HIV replication inhibitor peptides with carbon nanotubes
Chen Bao-Dong (陈保栋), Yang Chuan-Lu (杨传路), Wang Mei-Shan (王美山), Ma Xiao-Guang (马晓光 ). Chin. Phys. B, 2012, 21(8): 083103.
[8] Peptide friction in water nanofilm on mica surface
Zhou Bo(周波), Xiu Peng(修鹏), Wang Chun-Lei(王春雷), and Fang Hai-Ping(方海平) . Chin. Phys. B, 2012, 21(2): 026801.
[9] Functional structures and folding dynamics of two peptides
Sheng Yue-Biao (盛乐标), Li Jing (李菁), Ma Bao-Liang (马保亮), Wang Wei (王炜). Chin. Phys. B, 2005, 14(11): 2365-2369.
No Suggested Reading articles found!