Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 033201    DOI: 10.1088/1674-1056/21/3/033201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

The near-infrared spectra and distribution of excited states of electrodeless discharge rubidium vapour lamps

Sun Qin-Qing(孙钦青)a)b)†, Miao Xin-Yu(缪新育)a) Sheng Rong-Wu(盛荣武)c), and Chen Jing-Biao(陈景标)a)b)
a. Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, Beijing 100871, China;
b. School of Software and Microelectronics, Peking University, Beijing 100871, China;
c. Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract  The population ratio between the excited states of rubidium in the electrodeless discharge rubidium vapour lamp is calculated according to the near-infrared spectra in the region of 780-1550 nm. By using a 1529 nm laser, we measure the density of natural rubidium atoms at the 5P3/2 level. The populations of different excited states are then clarified.
Keywords:  electrodeless discharge rubidium vapour lamp      near-infrared spectra      population  
Received:  06 March 2011      Revised:  25 June 2011      Accepted manuscript online: 
PACS:  32.30.-r (Atomic spectra?)  
  32.70.Fw (Absolute and relative intensities)  
  32.80.-t (Photoionization and excitation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874009 and 11074011).
Corresponding Authors:  Sun Qin-Qing,sunqinqing@pku.edu.cn     E-mail:  sunqinqing@pku.edu.cn

Cite this article: 

Sun Qin-Qing(孙钦青), Miao Xin-Yu(缪新育) Sheng Rong-Wu(盛荣武), and Chen Jing-Biao(陈景标) The near-infrared spectra and distribution of excited states of electrodeless discharge rubidium vapour lamps 2012 Chin. Phys. B 21 033201

[1] Camparo J C and Klimcak C M 2006 J. Appl. Phys. 99 083306
[2] Camparo J C 2007 Physics Today 60 33
[3] Alexandrov E B, Bonch-Bruevich V A and Camparo J C 1992 Opt. Eng. 31 711
[4] Breton M, Tremblay P, Julien C, Cyr N and Tetu M 1995 IEEE Instru. Meas. 44 162
[5] Boucher R, Breton M and Tetu M 1992 IEEE Photonic. Tech. Lett. 4 327
[6] Moon H S, Lee W K, Lee L and Kim J B 2004 Appl. Phys. Lett. 85 3965
[7] Wang F, Zhao F, Qi F, Wu H H, Zhong D and Mei G H Spectrosc. Spect. Anal. 29 1164 (in Chinese)
[8] Camparo J C 2007 J. Appl. Phys. 101 053303
[9] Sun Q Q, Miao X Y, Sheng R W and Chen J B 2011 National Conference on Optoelectronics and Quantum Electronics of China, March 18-19, 2011 Beijing, China, p. 225
[10] Sansonetti J E 2006 J. Phys. Chem. Ref. Data 35 301
[11] Heavens O S 1961 J. Opt. Soc. Am. 51 1058
[12] Verolainen Y F and Nikolaich A Y 1982 Sov. Phys. Usp. 25 431
[13] Zhang L 1996 Study of the Mechanism of Active Faraday Anomalous Dispersion Optical Filter (FADOF) and the Application of Passive FADOF (Ph.D. Thesis) (Beijing: Peking University) (in Chinese)
[1] Measuring stellar populations, dust attenuation and ionized gas at kpc scales in 10010 nearby galaxies using the integral field spectroscopy from MaNGA
Niu Li(李牛) and Cheng Li(李成). Chin. Phys. B, 2023, 32(3): 039801.
[2] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[3] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[4] Advantage of populous countries in the trends of innovation efficiency
Dan-Dan Hu(胡淡淡), Xue-Jin Fang(方学进), and Xiao-Pu Han(韩筱璞). Chin. Phys. B, 2022, 31(6): 068903.
[5] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[6] Fast qubit initialization in a superconducting circuit
Tianqi Huang(黄天棋), Wen Zheng(郑文), Shuqing Song(宋树清), Yuqian Dong(董煜倩), Xiaopei Yang(杨晓沛), Zhikun Han(韩志坤), Dong Lan(兰栋), and Xinsheng Tan(谭新生). Chin. Phys. B, 2021, 30(7): 070310.
[7] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[8] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[9] Charge-state populations for the neon-XFEL system
Ping Deng(邓萍), Gang Jiang(蒋刚). Chin. Phys. B, 2019, 28(6): 063203.
[10] Dynamical control of population and entanglement for open Λ-type atoms by engineering the environment
Xiao-Lan Wang(王晓岚), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2019, 28(3): 030301.
[11] Analytic solutions for generalized PT-symmetric Rabi models
Yuanhao Dong(董元浩), Wen-Jing Zhang(张文静), Jing Liu(刘静), Xiao-Tao Xie(谢小涛). Chin. Phys. B, 2019, 28(11): 114202.
[12] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[13] Stochastic evolutionary public goods game with first and second order costly punishments in finite populations
Ji Quan(全吉), Yu-Qing Chu(储育青), Wei Liu(刘伟), Xian-Jia Wang(王先甲), Xiu-Kang Yang(阳修康). Chin. Phys. B, 2018, 27(6): 060203.
[14] Delay time dependence of wave packet motion and population transfer of four-level K2 molecule in pump-pump-probe pulses
Zhiqiang Chang(常志强), Changming Li(李昌明), Wei Guo(郭玮), Hongbin Yao(姚洪斌). Chin. Phys. B, 2018, 27(5): 053301.
[15] Theoretical analysis of suppressing Dick effect in Ramsey-CPT atomic clock by interleaving lock
Xiao-Lin Sun(孙晓林), Jian-Wei Zhang(张建伟), Peng-Fei Cheng(程鹏飞), Ya-Ni Zuo(左娅妮), Li-Jun Wang(王力军). Chin. Phys. B, 2018, 27(2): 023101.
No Suggested Reading articles found!