Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 010703    DOI: 10.1088/1674-1056/acfaf8
GENERAL Prev   Next  

Static-to-kinematic modeling and experimental validation of tendon-driven quasi continuum manipulators with nonconstant subsegment stiffness

Xian-Jie Zheng(郑先杰), Meng Ding(丁萌), Liao-Xue Liu(刘辽雪), Lu Wang(王璐), and Yu Guo(郭毓)
School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  Continuum robots with high flexibility and compliance have the capability to operate in confined and cluttered environments. To enhance the load capacity while maintaining robot dexterity, we propose a novel non-constant subsegment stiffness structure for tendon-driven quasi continuum robots (TDQCRs) comprising rigid-flexible coupling subsegments. Aiming at real-time control applications, we present a novel static-to-kinematic modeling approach to gain a comprehensive understanding of the TDQCR model. The analytical subsegment-based kinematics for the multisection manipulator is derived based on screw theory and product of exponentials formula, and the static model considering gravity loading, actuation loading, and robot constitutive laws is established. Additionally, the effect of tension attenuation caused by routing channel friction is considered in the robot statics, resulting in improved model accuracy. The root-mean-square error between the outputs of the static model and the experimental system is less than 1.63% of the arm length (0.5 m). By employing the proposed static model, a mapping of bending angles between the configuration space and the subsegment space is established. Furthermore, motion control experiments are conducted on our TDQCR system, and the results demonstrate the effectiveness of the static-to-kinematic model.
Keywords:  static-to-kinematic modeling scheme      tendon-driven quasi continuum robot      nonconstant subsegment stiffness      tension attenuation effect  
Received:  18 July 2023      Revised:  22 August 2023      Accepted manuscript online:  19 September 2023
PACS:  07.05.Tp (Computer modeling and simulation)  
  07.07.Tw (Servo and control equipment; robots)  
  45.20.D- (Newtonian mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61973167) and the Jiangsu Funding Program for Excellent Postdoctoral Talent.
Corresponding Authors:  Yu Guo     E-mail:  guoyu@njust.edu.cn

Cite this article: 

Xian-Jie Zheng(郑先杰), Meng Ding(丁萌), Liao-Xue Liu(刘辽雪), Lu Wang(王璐), and Yu Guo(郭毓) Static-to-kinematic modeling and experimental validation of tendon-driven quasi continuum manipulators with nonconstant subsegment stiffness 2024 Chin. Phys. B 33 010703

[1] Ba W M, Dong X, Mohammad A, Wang M F, Axinte D and Norton A 2021 IEEE/ASME Trans. Mechatronics 26 3010
[2] Mohammad A, Russo M, Fang Y H, Dong X, Axinte D and Kell J 2021 IEEE Robot. Autom. Lett. 6 7493
[3] Wang M Y, Du L, Yuan J J, Ma S G and Bao S 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), December 27-31, Sanya, China, p. 74
[4] Müller D, Veil C, Seidel M and Sawodny O 2020 Mechatronics 70 102418
[5] Dupont PE, Simaan N, Choset H and Rucker C 2022 Proc. IEEE Inst. Electr. Electron. Eng. 110 847
[6] Peng Y, Liu Y G, Yang Y, Liu N, Sun Y, Liu Y Y, Pu H Y, Xie S R and Luo J 2019 Mechatronics 60 56
[7] He B, Zhang C H and Ding A 2017 Chin. Phys. B 26 126102
[8] Rus D and Tolley M T 2015 Nature 521 467
[9] Hemami A 1985 Robotics 1 27
[10] Wooten M B and Walker I D 2022 IEEE Robot. Autom. Lett. 7 10136
[11] Yuan H and Li Z 2018 Robot. Comput.-Integr. Manuf. 49 240
[12] Mo H J, Wei R F, Ouyang B, Xing L X, Shan Y H, Liu Y H and Sun D 2021 IEEE Robot. Autom. Lett. 6 1074
[13] Wang Q, Yong Y Q and Bai Z M 2022 Chin. Phys. B 31 128801
[14] Uppalapati N K and Krishnan G 2021 J. Mech. Robot. 13 011010
[15] Qin L, Liang X Q, Huang H, Chui C K, Yeow R C and Zhu J 2019 Soft Robot. 6 455
[16] Tamadon I, Huan Y, de Groot A G, Menciassi A and Sinibaldi E 2020 Int. J. Med. Robot. Comput. Assist. Surg 16 e2072
[17] Yukisawa T, Ishii Y, Nishikawa S, Niiyama R and Kuniyoshi Y 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO) December 5-8, Macau, Macao, p. 2303
[18] Sui D B, Zhao S K, Wang T S, Liu Y B, Zhu Y H and Zhao J 2022 J. Bionic Eng.
[19] Xu K and Simaan N 2010 J. Mech. Robot. 2 011006
[20] Zhao B, Zhang W H, Zhang Z Y, Zhu X Y and Xu K 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) October 01-05, Madrid, Spain, p. 7492
[21] Yeshmukhametov A, Koganezawa K and Yamamoto Y 2019 Robotics 8 51
[22] Wang M F, Dong X, Ba W M, Mohammad A, Axinte D and Norton A 2021 Robot. Comput.-Integr. Manuf. 67 102054
[23] Li M H, Kang R J, Geng S N and Guglielmino E 2018 Trans. Inst. Meas. Control. 40 3263
[24] Barrientos-Diez J, Dong X, Axinte D and Kell J 2021 Robot. Comput.-Integr. Manuf. 67 102019
[25] Della Santina C, Bicchi A and Rus D 2020 IEEE Robot. Autom. Lett. 5 1001
[26] Greigarn T and Çavuşoǧlu M C 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems September 14-88, Chicago, IL, USA, p. 3476
[27] Jones B A, Gray R L and Turlapati K 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems October 10-15, St. Louis, MO, USA, p. 2659
[28] Chen Y Y, Wu B B, Jin J B and Xu K 2021 IEEE Robot. Autom. Lett. 6 1590
[29] Renda F, Boyer F, Dias J and Seneviratne L 2018 IEEE Trans. Robot. 34 1518
[30] Grazioso S, Di Gironimo G and Siciliano B 2019 Soft Robot. 6 790
[31] Venkiteswaran V K, Sikorski J and Misra S 2019 Mech. Mach. Theory 139 34
[32] Thuruthel T G, Falotico E, Manti M, Pratesi A, Cianchetti M and Laschi C 2017 Soft Robot. 4 285
[33] Giorelli M, Renda F, Calisti M, Arienti A, Ferri G and Laschi C 2015 IEEE Trans. Robot. 31 823
[34] Elgeneidy K, Lohse N and Jackson M 2018 Mechatronics 50 234
[35] Lynch K M and Park F C 2017 Modern Robotics (Cambridge:Cambridge University Press) p. 118
[36] Keller S G and Gordon A P 2011 Strain Anal. Eng. Des 46 405
[37] Krogius M, Haggenmiller A and Olson E 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) November 03-08, Macau, China, p. 1898
[1] Multi-channel terahertz focused beam generator based on shared-aperture metasurface
Jiu-Sheng Li(李九生) and Yi Chen(陈翊). Chin. Phys. B, 2023, 32(12): 124204.
[2] Model considering panic emotion and personality traits for crowd evacuation
Hua-Kai Sun(孙华锴) and Chang-Kun Chen(陈长坤). Chin. Phys. B, 2023, 32(5): 050401.
[3] Phase-field-crystal simulation of nano-single crystal microcrack propagation under different orientation angles
Dunwei Peng(彭敦维), Yunpeng Zhang(张云鹏), Xiaolin Tian(田晓林), Hua Hou(侯华), and Yuhong Zhao(赵宇宏). Chin. Phys. B, 2023, 32(4): 044601.
[4] Simulation based on a modified social force model for sensitivity to emergency signs in subway station
Zheng-Yu Cai(蔡征宇), Ru Zhou(周汝), Yin-Kai Cui(崔银锴), Yan Wang(王妍), and Jun-Cheng Jiang(蒋军成). Chin. Phys. B, 2023, 32(2): 020507.
[5] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[6] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[7] Switchable vortex beam polarization state terahertz multi-layer metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(11): 114201.
[8] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[9] A modified heuristics-based model for simulating realistic pedestrian movement behavior
Wei-Li Wang(王维莉), Hai-Cheng Li(李海城), Jia-Yu Rong(戎加宇), Qin-Qin Fan(范勤勤), Xin Han(韩新), and Bei-Hua Cong(丛北华). Chin. Phys. B, 2022, 31(9): 094501.
[10] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[11] Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
Guan-Ning Wang(王冠宁), Tao Chen(陈涛), Jin-Wei Chen(陈锦炜), Kaifeng Deng(邓凯丰), and Ru-Dong Wang(王汝栋). Chin. Phys. B, 2022, 31(6): 060402.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[14] Modeling the dynamics of firms' technological impact
Shuqi Xu(徐舒琪), Manuel Sebastian Mariani, and Linyuan Lü(吕琳媛). Chin. Phys. B, 2021, 30(12): 120517.
[15] Using agent-based simulation to assess diseaseprevention measures during pandemics
Yunhe Tong(童蕴贺), Christopher King, and Yanghui Hu(胡杨慧). Chin. Phys. B, 2021, 30(9): 098903.
No Suggested Reading articles found!