|
|
Maskless fabrication of quasi-omnidirectional V-groove solar cells using an alkaline solution-based method |
Xingqian Chen(陈兴谦)1,2,3, Yan Wang(王燕)1,2,4,†, Wei Chen(陈伟)2, Yaoping Liu(刘尧平)1,2,‡, Guoguang Xing(邢国光)1,2,3, Bowen Feng(冯博文)1,2,3, Haozhen Li(李昊臻)1,2,3, Zongheng Sun(孙纵横)1,2,3, and Xiaolong Du(杜小龙)1,2,§ |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 Songshan Lake Materials Laboratory, Dongguan 523808, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 4 Beijing Hairou Laboratory, Beijing 101400, China |
|
|
Abstract Silicon passivated emitter and rear contact (PERC) solar cells with V-groove texture were fabricated using maskless alkaline solution etching with in-house developed additive. Compared with the traditional pyramid texture, the V-groove texture possesses superior effective minority carrier lifetime, enhanced p—n junction quality and better applied filling factor (FF). In addition, a V-groove texture can greatly reduce the shading area and edge damage of front Ag electrodes when the V-groove direction is parallel to the gridline electrodes. Due to these factors, the V-groove solar cells have a higher efficiency (21.78%) than pyramid solar cells (21.62%). Interestingly, external quantum efficiency (EQE) and reflectance of the V-groove solar cells exhibit a slight decrease when the incident light angle (θ) is increased from 0^o to 75^o, which confirms the excellent quasi omnidirectionality of the V-groove solar cells. The proposed V-groove solar cell design shows a 2.84% relative enhancement of energy output over traditional pyramid solar cells.
|
Received: 25 September 2023
Revised: 25 October 2023
Accepted manuscript online: 16 November 2023
|
PACS:
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
84.60.Rb
|
(Thermoelectric, electrogasdynamic and other direct energy conversion)
|
|
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2021B0101260001), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515110411), the National Natural Science Foundation of China (Grant No. 61904201). |
Corresponding Authors:
Yan Wang, Yaoping Liu, Xiaolong Du
E-mail: wangyan1987@hrl.ac.cn;ypliu@iphy.ac.cn;xldu@iphy.ac.cn
|
Cite this article:
Xingqian Chen(陈兴谦), Yan Wang(王燕), Wei Chen(陈伟), Yaoping Liu(刘尧平), Guoguang Xing(邢国光), Bowen Feng(冯博文), Haozhen Li(李昊臻), Zongheng Sun(孙纵横), and Xiaolong Du(杜小龙) Maskless fabrication of quasi-omnidirectional V-groove solar cells using an alkaline solution-based method 2024 Chin. Phys. B 33 018801
|
[1] Ju M, Mallem K, Dutta S, Balaji N, Oh D, Cho E C, Cho Y H, Kim Y and Yi J 2018 Materials Science in Semiconductor Processing 85 68 [2] Wang J, Zhong F, Liu H, Zhao L, Wang W, Xu X, Zhang Y and Yan H 2021 Solar Energy 221 114 [3] Zhong S, Wang W, Tan M, Zhuang Y and Shen W 2017 Advanced Science 4 1700200 [4] Bazyari S, Keypour R, Farhangi S, Ghaedi A and Bazyari K 2014 Journal of Power and Energy Engineering 02 718 [5] Spinelli P, Verschuuren M A and Polman A 2012 Nat. Commun. 3 692 [6] Yang L, Mo L, Okuno Y and He S 2013 Progress in Photovoltaics:Research and Applications 21 1077 [7] Xu Z, Yao Y, Brueckner E P, Li L, Jiang J, Nuzzo R G and Liu G L 2014 Nanotechnology 25 305301 [8] Zhuang Y F, Zhong S H, Xu H Y and Shen W Z 2018 Solar Energy Materials and Solar Cells 179 372 [9] Li Y, Zhong S, Zhuang Y, Yang L, Meng F, Wang W, Li Z and Shen W 2019 Advanced Electronic Materials 5 1800858 [10] Zhong S and Shen W 2020 J. Phys. D:Appl. Phys. 53 483001 [11] Lee I J, Paik U and Park J G 2013 Solar Energy 91 256 [12] Oh J, Yuan H C and Branz H M 2012 Nat. Nanotechnol. 7 743 [13] Toor F, Oh J and Branz H M 2014 Progress in Photovoltaics:Research and Applications 23 1375 [14] Savin H, Repo P, Gastrow G, Ortega P, Calle E, Garin M and Alcubilla R 2015 Nat. Nanotechnol. 10 624 [15] Zhan Y, Liu Y, Chen Q, Chen W, Wu J, Wang Y and Du X 2019 Solar Energy 193 132 [16] Zhao Y, Liu Y, Chen W, Wu J, Chen Q, Tang H, Wang Y and Du X 2020 Solar Energy 201 461 [17] Blakers A W and Green M A 1986 Appl. Phys. Lett. 48 215 [18] Reddeppa M, Thota C, Nam D J, Woo H, Kim S G and Kim M D 2021 Appl. Phys. Lett. 119 023901 [19] Gerhards C, Marckmann C, Tolle R, Spiegel M, Fath P, Willeke G, Bucher E, Creager J and Narayanan S 1997 the Twenty Sixth IEEE Photovoltaic Specialists Conference, 29 September-03 October, 1997, Anaheim CA, USA, p. 43 [20] Fath P, Borst C, Zechner C, Bucher E, Willeke G and Narayanan S 1997 Solar Energy Materials and Solar Cells 48 229 [21] Untila G, Palov A, Kost T, Chebotareva A, Stepanov A, Zaks M, Sitnikov A, Saprykin D and Grishaev A 2013 Physica Status Solidi (a) 210 760 [22] Cho C, Kim H, Jeong S, Baek S W, Seo J W, Han D, Kim K, Park Y, Yoo S and Lee J Y 2013 Solar Energy Materials and Solar Cells 115 36 [24] Chappell T I The V-groove multijunction solar cell 1979 IEEE Transactions on Electron Devices, July 1979, 26 p. 1091 [25] Domnich V, Gogotsi Y and Dub S 2000 Appl. Phys. Lett. 76 2214 [26] Kailer A, Gogotsi Y G and Nickel K G 1997 J. Appl. Phys. 81 3057 [27] Bradby J E, Williams J S and Swain M V 2003 Phys. Rev. B 67 085205 [28] Bradby J E, Williams J S, Wong-Leung J, Swain M V and Munroe P 2000 Appl. Phys. Lett. 77 3749 [29] Xu X, Wang P, Li X and Yang D 2012 Solar Energy Materials and Solar Cells 98 337 [30] Kawasegi N, Morita N, Yamada S, Takano N, Oyama T and Ashida K 2005 Nanotechnology 16 1411 [31] Chen W, Liu Y, Yang L, Wu J, Chen Q, Zhao Y, Wang Y and Du X 2018 Sci. Rep. 8 3408 [32] Lee D B 1969 J. Appl. Phys. 40 4569 [33] Seidel H, Csepregi L, Heuberger A and Baumgartel H 1990 Journal of the Electrochemical Society 137 3612 [34] Liang T, Xiong L, Lou H, Lan F, Zhang J, Liu Y, Li D, Zeng Q and Zeng Z 2022 Scripta Materialia 220 114936 [35] Ikoma Y 2019 Materials Transactions 60 1168 [36] Sproul A B 1994 J. Appl. Phys. 76 2851 [37] Wang F, Zhang Y, Yang M, Yang L, Sui Y, Yang J, Zhao Y and Zhang X 2018 Advanced Functional Materials 28 1805001 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|