Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 018801    DOI: 10.1088/1674-1056/ad0cd0
RAPID COMMUNICATION Prev   Next  

Maskless fabrication of quasi-omnidirectional V-groove solar cells using an alkaline solution-based method

Xingqian Chen(陈兴谦)1,2,3, Yan Wang(王燕)1,2,4,†, Wei Chen(陈伟)2, Yaoping Liu(刘尧平)1,2,‡, Guoguang Xing(邢国光)1,2,3, Bowen Feng(冯博文)1,2,3, Haozhen Li(李昊臻)1,2,3, Zongheng Sun(孙纵横)1,2,3, and Xiaolong Du(杜小龙)1,2,§
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Songshan Lake Materials Laboratory, Dongguan 523808, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Beijing Hairou Laboratory, Beijing 101400, China
Abstract  Silicon passivated emitter and rear contact (PERC) solar cells with V-groove texture were fabricated using maskless alkaline solution etching with in-house developed additive. Compared with the traditional pyramid texture, the V-groove texture possesses superior effective minority carrier lifetime, enhanced p—n junction quality and better applied filling factor (FF). In addition, a V-groove texture can greatly reduce the shading area and edge damage of front Ag electrodes when the V-groove direction is parallel to the gridline electrodes. Due to these factors, the V-groove solar cells have a higher efficiency (21.78%) than pyramid solar cells (21.62%). Interestingly, external quantum efficiency (EQE) and reflectance of the V-groove solar cells exhibit a slight decrease when the incident light angle (θ) is increased from 0^o to 75^o, which confirms the excellent quasi omnidirectionality of the V-groove solar cells. The proposed V-groove solar cell design shows a 2.84% relative enhancement of energy output over traditional pyramid solar cells.
Keywords:  V-groove      alkaline etching      quasi omnidirectionality      silicon solar cell  
Received:  25 September 2023      Revised:  25 October 2023      Accepted manuscript online:  16 November 2023
PACS:  88.40.hj (Efficiency and performance of solar cells)  
  88.40.H- (Solar cells (photovoltaics))  
  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2021B0101260001), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515110411), the National Natural Science Foundation of China (Grant No. 61904201).
Corresponding Authors:  Yan Wang, Yaoping Liu, Xiaolong Du     E-mail:  wangyan1987@hrl.ac.cn;ypliu@iphy.ac.cn;xldu@iphy.ac.cn

Cite this article: 

Xingqian Chen(陈兴谦), Yan Wang(王燕), Wei Chen(陈伟), Yaoping Liu(刘尧平), Guoguang Xing(邢国光), Bowen Feng(冯博文), Haozhen Li(李昊臻), Zongheng Sun(孙纵横), and Xiaolong Du(杜小龙) Maskless fabrication of quasi-omnidirectional V-groove solar cells using an alkaline solution-based method 2024 Chin. Phys. B 33 018801

[1] Ju M, Mallem K, Dutta S, Balaji N, Oh D, Cho E C, Cho Y H, Kim Y and Yi J 2018 Materials Science in Semiconductor Processing 85 68
[2] Wang J, Zhong F, Liu H, Zhao L, Wang W, Xu X, Zhang Y and Yan H 2021 Solar Energy 221 114
[3] Zhong S, Wang W, Tan M, Zhuang Y and Shen W 2017 Advanced Science 4 1700200
[4] Bazyari S, Keypour R, Farhangi S, Ghaedi A and Bazyari K 2014 Journal of Power and Energy Engineering 02 718
[5] Spinelli P, Verschuuren M A and Polman A 2012 Nat. Commun. 3 692
[6] Yang L, Mo L, Okuno Y and He S 2013 Progress in Photovoltaics:Research and Applications 21 1077
[7] Xu Z, Yao Y, Brueckner E P, Li L, Jiang J, Nuzzo R G and Liu G L 2014 Nanotechnology 25 305301
[8] Zhuang Y F, Zhong S H, Xu H Y and Shen W Z 2018 Solar Energy Materials and Solar Cells 179 372
[9] Li Y, Zhong S, Zhuang Y, Yang L, Meng F, Wang W, Li Z and Shen W 2019 Advanced Electronic Materials 5 1800858
[10] Zhong S and Shen W 2020 J. Phys. D:Appl. Phys. 53 483001
[11] Lee I J, Paik U and Park J G 2013 Solar Energy 91 256
[12] Oh J, Yuan H C and Branz H M 2012 Nat. Nanotechnol. 7 743
[13] Toor F, Oh J and Branz H M 2014 Progress in Photovoltaics:Research and Applications 23 1375
[14] Savin H, Repo P, Gastrow G, Ortega P, Calle E, Garin M and Alcubilla R 2015 Nat. Nanotechnol. 10 624
[15] Zhan Y, Liu Y, Chen Q, Chen W, Wu J, Wang Y and Du X 2019 Solar Energy 193 132
[16] Zhao Y, Liu Y, Chen W, Wu J, Chen Q, Tang H, Wang Y and Du X 2020 Solar Energy 201 461
[17] Blakers A W and Green M A 1986 Appl. Phys. Lett. 48 215
[18] Reddeppa M, Thota C, Nam D J, Woo H, Kim S G and Kim M D 2021 Appl. Phys. Lett. 119 023901
[19] Gerhards C, Marckmann C, Tolle R, Spiegel M, Fath P, Willeke G, Bucher E, Creager J and Narayanan S 1997 the Twenty Sixth IEEE Photovoltaic Specialists Conference, 29 September-03 October, 1997, Anaheim CA, USA, p. 43
[20] Fath P, Borst C, Zechner C, Bucher E, Willeke G and Narayanan S 1997 Solar Energy Materials and Solar Cells 48 229
[21] Untila G, Palov A, Kost T, Chebotareva A, Stepanov A, Zaks M, Sitnikov A, Saprykin D and Grishaev A 2013 Physica Status Solidi (a) 210 760
[22] Cho C, Kim H, Jeong S, Baek S W, Seo J W, Han D, Kim K, Park Y, Yoo S and Lee J Y 2013 Solar Energy Materials and Solar Cells 115 36
[24] Chappell T I The V-groove multijunction solar cell 1979 IEEE Transactions on Electron Devices, July 1979, 26 p. 1091
[25] Domnich V, Gogotsi Y and Dub S 2000 Appl. Phys. Lett. 76 2214
[26] Kailer A, Gogotsi Y G and Nickel K G 1997 J. Appl. Phys. 81 3057
[27] Bradby J E, Williams J S and Swain M V 2003 Phys. Rev. B 67 085205
[28] Bradby J E, Williams J S, Wong-Leung J, Swain M V and Munroe P 2000 Appl. Phys. Lett. 77 3749
[29] Xu X, Wang P, Li X and Yang D 2012 Solar Energy Materials and Solar Cells 98 337
[30] Kawasegi N, Morita N, Yamada S, Takano N, Oyama T and Ashida K 2005 Nanotechnology 16 1411
[31] Chen W, Liu Y, Yang L, Wu J, Chen Q, Zhao Y, Wang Y and Du X 2018 Sci. Rep. 8 3408
[32] Lee D B 1969 J. Appl. Phys. 40 4569
[33] Seidel H, Csepregi L, Heuberger A and Baumgartel H 1990 Journal of the Electrochemical Society 137 3612
[34] Liang T, Xiong L, Lou H, Lan F, Zhang J, Liu Y, Li D, Zeng Q and Zeng Z 2022 Scripta Materialia 220 114936
[35] Ikoma Y 2019 Materials Transactions 60 1168
[36] Sproul A B 1994 J. Appl. Phys. 76 2851
[37] Wang F, Zhang Y, Yang M, Yang L, Sui Y, Yang J, Zhao Y and Zhang X 2018 Advanced Functional Materials 28 1805001
[1] Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time
Yan-Yan Feng(冯艳艳), Xiao-Di Niu(牛潇迪), Yong-Hui Xu (徐永辉), and Wen Yang(杨文). Chin. Phys. B, 2021, 30(4): 048101.
[2] Thermal stress reduction of GaAs epitaxial growth on V-groove patterned Si substrates
Ze-Yuan Yang(杨泽园), Jun Wang(王俊), Guo-Feng Wu(武国峰), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(1): 016102.
[3] Simulation of a-Si: H/c-Si heterojunction solar cells: From planar junction to local junction
Haibin Huang(黄海宾), Lang Zhou(周浪), Jiren Yuan(袁吉仁), Zhijue Quan(全知觉). Chin. Phys. B, 2019, 28(12): 128503.
[4] Dependence of the solar cell performance on nanocarbon/Si heterojunctions
Shiqi Xiao(肖仕奇), Qingxia Fan(范庆霞), Xiaogang Xia(夏晓刚), Zhuojian Xiao(肖卓建), Huiliang Chen(陈辉亮), Wei Xi(席薇), Penghui Chen(陈鹏辉), Junjie Li(李俊杰), Yanchun Wang(王艳春), Huaping Liu(刘华平), Weiya Zhou(周维亚). Chin. Phys. B, 2018, 27(7): 078801.
[5] Detection of finger interruptions in silicon solar cells using photoluminescence imaging
Lei Zhang(张磊), Peng Liang(梁鹏), Hui-Shi Zhu(朱慧时), Pei-De Han(韩培德). Chin. Phys. B, 2018, 27(6): 068801.
[6] Application of millimeter-sized polymer cylindrical lens array concentrators in solar cells
Yao-Ju Zhang(张耀举), Yi-Jie Li(李艺杰), Jie Lin(林洁), Chao-Long Fang(方朝龙), Si-Yuan Liu(刘思远). Chin. Phys. B, 2018, 27(5): 058801.
[7] Simulation and experimental study of a novel bifacial structure of silicon heterojunction solar cell for high efficiency and low cost
Haibin Huang(黄海宾), Gangyu Tian(田罡煜), Lang Zhou(周浪), Jiren Yuan(袁吉仁), Wolfgang R. Fahrner, Wenbin Zhang(张闻斌), Xingbing Li(李杏兵), Wenhao Chen(陈文浩), Renzhong Liu(刘仁中). Chin. Phys. B, 2018, 27(3): 038502.
[8] Improvement in IBC-silicon solar cell performance by insertion of highly doped crystalline layer at heterojunction interfaces
Hadi Bashiri, Mohammad Azim Karami, Shahramm Mohammadnejad. Chin. Phys. B, 2017, 26(10): 108801.
[9] Photocarrier radiometry for noncontact evaluation of space monocrystalline silicon solar cell under low-energy electron irradiation
Liu Jun-Yan (刘俊岩), Song Peng (宋鹏), Wang Fei (王飞), Wang Yang (王扬). Chin. Phys. B, 2015, 24(9): 097801.
[10] Detailed balance limit efficiency of silicon intermediate band solar cells
Cao Quan(曹权), Ma Zhi-Hua(马志华), Xue Chun-Lai(薛春来),Zuo Yu-Hua(左玉华), and Wang Qi-Ming(王启明) . Chin. Phys. B, 2011, 20(9): 097103.
[11] Hydrogen passivation of multi-crystalline silicon solar cells
Hu Zhi-Hua (胡志华), Liao Xian-Bo (廖显伯), Liu Zu-Ming (刘祖明), Xia Chao-Feng (夏朝凤), Chen Ting-Jin (陈庭金). Chin. Phys. B, 2003, 12(1): 112-115.
No Suggested Reading articles found!