Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 018702    DOI: 10.1088/1674-1056/ad0cc9
Special Issue: SPECIAL TOPIC — States and new effects in nonequilibrium
SPECIAL TOPIC—States and new effects in nonequilibrium Prev   Next  

Core-level spectroscopy of the photodissociation process of BrCN molecule

Kun Zhou(周坤)1,2 and Han Wang(王涵)1,2,†
1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
2 Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
Abstract  Fewest-switches surfacing hopping (FSSH) simulations have been performed with the high-level multi-reference electronic structure method to explore the coupled electronic and nuclear dynamics upon photoexcitation of cyanogen bromide (BrCN). The potential energy surfaces (PES) of BrCN are charted as functions of the Jacobi coordinates (R, θ). An in-depth examination of the FSSH trajectories reveals the temporal dynamics of the molecule and the population changes of the lowest twelve states during BrCN's photodissociation process, which presents a rich tapestry of dynamical information. Furthermore, the carbon K-edge x-ray absorption spectroscopy (XAS) is calculated with multi-reference inner-shell spectral simulations. The rotation of the CN fragment and the elongation of the C—Br bond are found to be the reason for the peak shifting in the XAS. Our findings offer a nuanced interpretation for inner-shell probe investigations of BrCN, setting the stage for a deeper understanding of the photodissociation process of cyanogen halides molecules.
Keywords:  x-ray absorption spectroscopy      photodissociation      fewest-switches surface hopping  
Received:  23 August 2023      Revised:  09 November 2023      Accepted manuscript online:  16 November 2023
PACS:  87.15.ht (Ultrafast dynamics; charge transfer)  
  78.70.Dm (X-ray absorption spectra)  
  31.50.Df (Potential energy surfaces for excited electronic states)  
  33.20.-t (Molecular spectra)  
Fund: g H. W. and K. Z. were supported by the start-up funding of ShanghaiTech University in China. This work was also supported by a user project at the Molecular Foundry (LBNL) and its computing resources administered by the HighPerformance Computing Services Group at LBNL. Work at the Molecular Foundry was supported by the Office of Science and Office of Basic Energy Sciences of the U.S. Department of Energy (Grant No. DE-AC02-05CH11231). This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U. S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory (Grant No. DE-AC02-05CH11231). This work was also supported by the High-Performance Computing (HPC) Platform of ShanghaiTech University. We would like to thank Jingxiang Zou for the discussion of NTO analysis.
Corresponding Authors:  Han Wang     E-mail:  wanghan3@shanghaitech.edu.cn

Cite this article: 

Kun Zhou(周坤) and Han Wang(王涵) Core-level spectroscopy of the photodissociation process of BrCN molecule 2024 Chin. Phys. B 33 018702

[1] Roberts J M and Liu Y 2019 Atmos. Chem. Phys. 19 4419
[2] Pozzer A C, Góez P A and Weiss J 2022 Sci. Total Environ. 838 156155
[3] Hossaini R, Chipperfield M P, Montzka S A, Rap A, Dhomse S and Feng W 2015 Nat. Geosci. 8 186
[4] Yin T, Ma L, Gao H and Cheng M 2022 Chin. J. Chem. Phys. 35 86
[5] Snow T P and McCall B J 2006 Annu. Rev. Astron. Astrophys. 44 367
[6] Fisher W H, Eng R, Carrington T, Dugan C H, Filseth S V and Sadowski C M 1984 Chem. Phys. 89 457
[7] Holdy K E, Klotz L C and Wilson K R 2003 J. Chem. Phys. 52 4588
[8] Morzan U N, Videla P E, Soley M B, Nibbering E T J and Batista V S 2020 Angew. Chem. Int. Ed. 59 20044
[9] Dantus M, Rosker M J and Zewail A H 1988 J. Chem. Phys. 89 6128
[10] Felps W S, Rupnik K and McGlynn S P 1991 J. Phys. Chem. 95 639
[11] Rivera C A, Winter N, Harper R V, Benjamin I and Bradforth S E 2011 Phys. Chem. Chem. Phys. 13 8269
[12] Helbing J, Chergui M, Fernandez-Alberti S, Echave J, Halberstadt N and Beswick J A 2000 Phys. Chem. Chem. Phys. 2 4131
[13] Zhong D and Zewail A H 1998 J. Phys. Chem. A 102 4031
[14] Dzegilenko F N, Bowman J M and Amatatsu Y 1997 Chem. Phys. Lett. 264 24
[15] Batista V S and Brumer P 2001 J. Phys. Chem. A 105 2591
[16] Qian J, Tannor D J, Amatatsu Y and Morokuma K 1994 J. Chem. Phys. 101 9597
[17] Coronado E A, Batista V S and Miller W H 2000 J. Chem. Phys. 112 5566
[18] Wang Y and Qian C X W 1994 J. Chem. Phys. 100 2707
[19] Amatatsu Y, Yabushita S and Morokuma K 1994 J. Chem. Phys. 100 4894
[20] Fernandez A S, Echave J, Engel V, Halberstadt N and Beswick J A 2000 J. Chem. Phys. 113 1027
[21] Halpern J B and Jackson W M 1982 J. Phys. Chem. 86 3528
[22] Ashfold M N R and Simons J P 1977 Chem. Phys. Lett. 47 65
[23] Franks K J, Li H and Kong W 1999 J. Chem. Phys. 111 1884
[24] Black J F, Waldeck J R and Zare R N 1990 J. Chem. Phys. 92 3519
[25] Scherer N F, Knee J L, Smith D D and Zewail A H 1985 J. Phys. Chem. 89 5141
[26] Gao X F, An F, Li H, Xie J C, Wang X D, Meng X, Wu B, Xie D Q and Tian S X 2020 J. Phys. Chem. Lett. 11 9110
[27] Franks K J, Li H, Kuy S and Kong W 1999 Chem. Phys. Lett. 302 151
[28] Shokoohi F, Hay S and Wittig C 1984 Chem. Phys. Lett. 110 1
[29] Nadler I, Reisler H and Wittig C 1984 Chem. Phys. Lett. 103 451
[30] Gao X, Li H, Meng X and Tian S 2019 Chinese J. Chem. Phys. 32 89
[31] Costen M L, North S W and Hall G E 1999 J. Chem. Phys. 111 6735
[32] Lemke H T, Bressler C, Chen L X, Fritz D M, Gaffney K J, Galler A, Gawelda W, Haldrup K, Hartsock R W, Ihee H, Kim J, Kim K H, Lee J H, Nielsen M M, Stickrath A B, Zhang W, Zhu D and Cammarata M 2013 J. Phys. Chem. A 117 735
[33] Attar A R, Bhattacherjee A, Pemmaraju C D, Schnorr K, Closser K D, Prendergast D and Leone S R 2017 Science 356 54
[34] Kobayashi Y, Chang K F, Zeng T, Neumark D M and Leone S R 2019 Science 365 79
[35] Yabushita S and Morokuma K 1990 Chem. Phys. Lett. 175 518
[36] Bhattacharyya I, Bera N C and Das A K 2007 Int. J. Quantum Chem. 107 680
[37] Bai Y Y, Segal G A and Reisler H 1991 J. Chem. Phys. 94 331
[38] Nath B and Mondal C K 2014 Comput. Theor. Chem. 1048 54
[39] Malmqvist P A, Roos B O and Schimmelpfennig B 2002 Chem. Phys. Lett. 357 230
[40] Tully J C 1990 J. Chem. Phys. 93 1061
[41] Richter M, Marquetand P, González-Vázquez J, Sola I and González L 2011 J. Chem. Theory Comput. 7 1253
[42] Mai S, Marquetand P and González L 2018 Wiley Interdiscip. Rev. Comput. Mol. Sci. 8 e1370
[43] Fdez G I, Vacher M, Alavi A, et al. 2019 J. Chem. Theory Comput. 15 5925
[44] Wang H, Odelius M and Prendergast D 2019 J. Chem. Phys. 151 124106
[45] Huang C, Li W, Silva R and Suits A G 2006 Chem. Phys. Lett. 426 242
[1] Direct Coulomb explosion of N2O2+ induced by monochromatic extreme ultraviolet photons at 38.5 eV
Min Zhang(张敏), B Najjari, Bang Hai(海帮), Dong-Mei Zhao(赵冬梅), Jian-Ting Lei(雷建廷), Da-Pu Dong(董达谱), Shao-Feng Zhang(张少锋), Xin-Wen Ma(马新文). Chin. Phys. B, 2020, 29(6): 063302.
[2] Production of cold CN molecules by photodissociating ICN precursors in brute-force field
Wen-Xia Xu(徐文霞), Yong-Cheng Yang(杨永成), Lian-Zhong Deng(邓联忠). Chin. Phys. B, 2017, 26(5): 053702.
[3] Coulomb explosion of CS2 molecule under an intense femtosecond laser field
Xiao Wang(王潇), Jian Zhang(张健), Shi-An Zhang(张诗按), Zhen-Rong Sun(孙真荣). Chin. Phys. B, 2016, 25(5): 053301.
[4] Photostop of iodine atoms from electrically oriented ICl molecules
Bao Da-Xiao (暴大小), Deng Lian-Zhong (邓联忠), Xu Liang (许亮), Yin Jian-Ping (印建平). Chin. Phys. B, 2015, 24(11): 113702.
[5] Production of CH (A2Δ) by multi-photon dissociation of (CH3)2CO, CH3NO2, CH2Br2, and CHBr3 at 213 nm
Li Sheng-Qiang (李胜强), Xu Liang (许亮), Chen Yang-Qin (陈扬骎), Deng Lian-Zhong (邓联忠), Yin Jian-Ping (印建平). Chin. Phys. B, 2014, 23(8): 083701.
[6] Control of the photoionization/photodissociation processes of cyclopentanone with trains of femtosecond laser pulses
Song Yao-Dong (宋耀东), Chen Zhou (陈洲), Yang Xue (杨雪), Sun Chang-Kai (孙长凯), Zhang Cong-Cong (张丛丛), Hu Zhan (胡湛). Chin. Phys. B, 2013, 22(10): 103301.
[7] Interference of dissociating wave packets in the I2 molecule driven by femtosecond laser pulses
Han Yong-Chang(韩永昌), Hu Wen-Hui(胡文辉), Yu Jie(于杰),andCong Shu-Lin(丛书林). Chin. Phys. B, 2009, 18(11): 4834-4839.
[8] Multi-reference calculations of the photodissociation of HSCH3 molecule
Yan Bing(闫冰) and Pan Shou-Fu(潘守甫) . Chin. Phys. B, 2008, 17(4): 1501-1505.
No Suggested Reading articles found!