Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 097103    DOI: 10.1088/1674-1056/20/9/097103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Detailed balance limit efficiency of silicon intermediate band solar cells

Cao Quan(曹权), Ma Zhi-Hua(马志华), Xue Chun-Lai(薛春来),Zuo Yu-Hua(左玉华), and Wang Qi-Ming(王启明)
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors,Chinese Academy of Sciences, Beijing 100083, China
Abstract  The detailed balance method is used to study the potential of the intermediate band solar cell (IBSC), which can improve the efficiency of the Si-based solar cell with a bandgap between 1.1 eV to 1.7 eV. It shows that a crystalline silicon solar cell with an intermediate band located at 0.36 eV below the conduction band or above the valence band can reach a limiting efficiency of 54% at the maximum light concentration, improving greatly than 40.7% of the Shockley—Queisser limit for the single junction Si solar cell. The simulation also shows that the limiting efficiency of the silicon-based solar cell increases as the bandgap increases from 1.1 eV to 1.7 eV, and the amorphous Si solar cell with a bandgap of 1.7 eV exhibits a radiative limiting efficiency of 62.47%, having a better potential.
Keywords:  intermediate band      silicon solar cell      concentrated light      detailed balance principle  
Received:  01 March 2011      Revised:  12 May 2011      Accepted manuscript online: 
PACS:  71.28.+d (Narrow-band systems; intermediate-valence solids)  
  71.55.-i (Impurity and defect levels)  
  84.60.Jt (Photoelectric conversion)  

Cite this article: 

Cao Quan(曹权), Ma Zhi-Hua(马志华), Xue Chun-Lai(薛春来),Zuo Yu-Hua(左玉华), and Wang Qi-Ming(王启明) Detailed balance limit efficiency of silicon intermediate band solar cells 2011 Chin. Phys. B 20 097103

[1] Zhao J, Wang A, Green M A and Novel F F 1998 Appl. Phys. Lett. 73 1991
[2] Tisdale W A, Williams K J, Timp B A, Norris D J, Aydil E S and Zhu X Y 2010 Science 328 1543
[3] Conibeer G, Green M, Corkish R, Cho Y, Cho E C, Jiang C W, Fangsuwannarak T, Pink E, Huang Y D, Puzzer T, Trupke T, Richards B, Shalav A and Lin K L 2006 Thin Solid Films 511 654
[4] Luque A and Mart'hi A 1997 Phys. Rev. Lett. 78 5014
[5] Green M A 2001 Prog. Photovoltaics 9 137
[6] Mart'hi A, Marron D F and Luque A 2008 J. Appl. Phys. 103 073706
[7] Ley M, Boudaden J and Kuznicki Z T 2005 J. Appl. Phys. 98 044905
[8] Zhang X D, Zhao Y, Sun F H, Wang S F, Han X Y, Wei C C, Sun J, Geng X H and Xiong S Z 2009 Acta Phys. Sin. 58 5041
[9] Zhang X D, Zhao Y, Zhu F, Sun J, Wei C C, Hou G F, Geng X H and Xiong S Z 2004 Chin. Phys. 13 1370
[10] Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
[11] Hubbard S M, Cress C D, Bailey C G, Raffaelle R P, Bailey S G and Wilt D M 2008 J. Appl. Lett. 123 512
[12] Wang W, Lin A S and Phillips J D 2009 Appl. Phys. Lett. 95 011103
[13] L'opez N, Reichertz L A, Yu K M, Campman K and Walukiewicz W 2011 Phys. Rev. Lett. 106 028701
[14] Olea J, Toledano-Luque M, Pastor D, San-Andr'es D, M'artil I and Gonz'alez-D'hiaz G 2010 J. Appl. Phys. 107 103524
[15] Bremner S P, Corkish R and Honsberg C B 1999 IEEE Trans. Electron Devices 46 1932
[16] Navruz T S and Saritas M 2008 Sol. Energ. Mat. Sol. C 92 273
[17] Schmeits M and Mani A A 1999 J. Appl. Phys. 85 2207
[18] Henry C 1980 J. Appl. Phys. 51 4494
[1] Simulation of a-Si: H/c-Si heterojunction solar cells: From planar junction to local junction
Haibin Huang(黄海宾), Lang Zhou(周浪), Jiren Yuan(袁吉仁), Zhijue Quan(全知觉). Chin. Phys. B, 2019, 28(12): 128503.
[2] Dependence of the solar cell performance on nanocarbon/Si heterojunctions
Shiqi Xiao(肖仕奇), Qingxia Fan(范庆霞), Xiaogang Xia(夏晓刚), Zhuojian Xiao(肖卓建), Huiliang Chen(陈辉亮), Wei Xi(席薇), Penghui Chen(陈鹏辉), Junjie Li(李俊杰), Yanchun Wang(王艳春), Huaping Liu(刘华平), Weiya Zhou(周维亚). Chin. Phys. B, 2018, 27(7): 078801.
[3] Detection of finger interruptions in silicon solar cells using photoluminescence imaging
Lei Zhang(张磊), Peng Liang(梁鹏), Hui-Shi Zhu(朱慧时), Pei-De Han(韩培德). Chin. Phys. B, 2018, 27(6): 068801.
[4] Application of millimeter-sized polymer cylindrical lens array concentrators in solar cells
Yao-Ju Zhang(张耀举), Yi-Jie Li(李艺杰), Jie Lin(林洁), Chao-Long Fang(方朝龙), Si-Yuan Liu(刘思远). Chin. Phys. B, 2018, 27(5): 058801.
[5] Simulation and experimental study of a novel bifacial structure of silicon heterojunction solar cell for high efficiency and low cost
Haibin Huang(黄海宾), Gangyu Tian(田罡煜), Lang Zhou(周浪), Jiren Yuan(袁吉仁), Wolfgang R. Fahrner, Wenbin Zhang(张闻斌), Xingbing Li(李杏兵), Wenhao Chen(陈文浩), Renzhong Liu(刘仁中). Chin. Phys. B, 2018, 27(3): 038502.
[6] Improvement in IBC-silicon solar cell performance by insertion of highly doped crystalline layer at heterojunction interfaces
Hadi Bashiri, Mohammad Azim Karami, Shahramm Mohammadnejad. Chin. Phys. B, 2017, 26(10): 108801.
[7] Photocarrier radiometry for noncontact evaluation of space monocrystalline silicon solar cell under low-energy electron irradiation
Liu Jun-Yan (刘俊岩), Song Peng (宋鹏), Wang Fei (王飞), Wang Yang (王扬). Chin. Phys. B, 2015, 24(9): 097801.
[8] Theoretical optoelectronic analysis of intermediate-band photovoltaic material based on ZnY1-xOx (Y=S, Se, Te) semiconductors by first-principles calculations
Wu Kong-Ping (吴孔平), Gu Shu-Lin (顾书林), Ye Jian-Dong (叶建东), Tang Kun (汤琨), Zhu Shun-Ming (朱顺明), Zhou Meng-Ran (周孟然), Huang You-Rui (黄友锐), Zhang Rong (张荣), Zheng You-Dou (郑有炓). Chin. Phys. B, 2013, 22(10): 107103.
[9] Infrared response of the lateral PIN structure of a highly titanium-doped silicon-on-insulator material
Ma Zhi-Hua(马志华), Cao Quan(曹权), Zuo Yu-Hua(左玉华),Zheng Jun(郑军), Xue Chun-Lai(薛春来), Cheng Bu-Wen(成步文), and Wang Qi-Ming(王启明) . Chin. Phys. B, 2011, 20(10): 106104.
[10] Hydrogen passivation of multi-crystalline silicon solar cells
Hu Zhi-Hua (胡志华), Liao Xian-Bo (廖显伯), Liu Zu-Ming (刘祖明), Xia Chao-Feng (夏朝凤), Chen Ting-Jin (陈庭金). Chin. Phys. B, 2003, 12(1): 112-115.
No Suggested Reading articles found!