Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 120205    DOI: 10.1088/1674-1056/ad01a5
GENERAL Prev   Next  

Rational solutions of Painlevé-II equation as Gram determinant

Xiaoen Zhang(张晓恩)1,† and Bing-Ying Lu(陆冰滢)2
1 College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China;
2 SISSA, Via Bonomea 265, Trieste, Italy
Abstract  Under the Flaschka-Newell Lax pair, the Darboux transformation for the Painlevé-II equation is constructed by the limiting technique. With the aid of the Darboux transformation, the rational solutions are represented by the Gram determinant, and then we give the large y asymptotics of the determinant and the rational solutions. Finally, the solution of the corresponding Riemann-Hilbert problem is obtained from the Darboux matrices.
Keywords:  Painlevé-II equation      Darboux transformation      rational solutions  
Received:  30 August 2023      Revised:  08 September 2023      Accepted manuscript online:  10 October 2023
PACS:  02.30.Ik (Integrable systems)  
  04.20.Jb (Exact solutions)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: The authors sincerely thank Professor Liming Ling for his guidance and help. Project supported by the National Natural Science Foundation of China (Grant No.12101246).
Corresponding Authors:  Xiaoen Zhang     E-mail:  xezhang19890309@163.com

Cite this article: 

Xiaoen Zhang(张晓恩) and Bing-Ying Lu(陆冰滢) Rational solutions of Painlevé-II equation as Gram determinant 2023 Chin. Phys. B 32 120205

[1] Picard E 1889 J. de Liouville 5 135
[2] Barouch E, McCoy B M and Wu T T 1973 Phys. Rev. Lett. 31 1409
[3] Jimbo M, Miwa T, Môri Y and Sato M 1980 Physica D 1 80
[4] Kudryashov N A 1997 Phys. Lett. A 233 397
[5] Giannini J A 1989 Phys. Lett. A 141 417
[6] Clerc M G 2017 Valc. Var. 56 93
[7] Johnson C V arXiv: hep-th/0610223
[8] Clarkson P A 2009 Stud. Appl. Math. 123 37
[9] Dong J Y, Ling L M and Zhang X E 2022 Physica D 432 133152
[10] Yang B and Yang J K 2021 Physica D 419 132850
[11] Yang B and Yang J K 2021 Physica D 425 132958
[12] Yablonskii A I 1959 Vesti Akad. Navuk. BSSR Ser. Fiz. Tkh. Nauk. 3 30
[13] Airault H 1979 Stud. Appl. Math. 61 31
[14] Lukashevich N A 1971 Differ. Uravn. 7 1124
[15] Murata Y 1985 Fuckc. Ekvacioj 28 1
[16] Clarkson P A 2003 J. Comput. Appl. Math. 153 127
[17] Clarkson P A, Gómez-Ullate D, Grandati Y and Milson R 2020 Stud. Appl. Math. 144 357
[18] Clarkson P A and Mansfield E L 1982 J. Math. Phys. 23 2033
[20] Kajiwara K and Ohta Y 1996 J. Math. Phys. 37 4693
[21] Okamoto K 1986 Math. Ann. 275 221
[22] Fokas A S, Its A R, Kapaev A A and Novokshenov V Y 2006 American Mathematical Society 128 1
[23] Bertola M and Tovbis A 2013 Comm. Pure Appl. Math. 66 0678
[24] Bilman D, Ling L M and Miller P D 2020 Duke Math. J. 169 671
[25] Guo B L and Ling L M 2011 Chin. Phys. Lett. 28 110202
[26] Yang X Y, Zhang Z and Li B 2020 Chin. Phys. B 29 100501
[27] Ablowitz M J, Ramani A and Suger H 1978 Lett. Al Nuovo Cim. 23 333
[28] Ablowitz M J and Segur H 1977 Phys. Rev. Lett. 38 1103
[29] Flaschka H and Newell A C 1980 Commun. Math. Phys. 76 65
[30] Kitaev A V 2017 SIGMA 13 29
[32] Ablowitz M J, Kaup D J, Newell A C and Segur H 1974 Stud. Appl. Math. 53 249
[33] Guo B L, Ling L M and Liu Q P 2012 Phys. Rev. E 85 026607
[34] Ling L M, Zhao L C and Guo B L 2015 Nonlinearity 28 3243
[35] Weiss J 1983 J. Math. Phys. 24 1405
[36] Clarkson P A, Joshi N and Pickering A 1999 Inverse Problems 15 175
[37] Ling L M, Feng B F and Zhu Z N 2016 Physica D 327 13
[38] Zhang X E and Ling L M 2021 Physica D 426 132982
[39] Ablowitz M J and Satsuma J 1978 J. Math. Phys. 19 2180
[1] Breather and its interaction with rogue wave of the coupled modified nonlinear Schrödinger equation
Ming Wang(王明), Tao Xu(徐涛), Guoliang He(何国亮), and Yu Tian(田雨). Chin. Phys. B, 2023, 32(5): 050503.
[2] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[3] Diverse soliton solutions and dynamical analysis of the discrete coupled mKdV equation with 4×4 Lax pair
Xue-Ke Liu(刘雪珂) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2023, 32(12): 120203.
[4] Darboux transformation, infinite conservation laws, and exact solutions for the nonlocal Hirota equation with variable coefficients
Jinzhou Liu(刘锦洲), Xinying Yan(闫鑫颖), Meng Jin(金梦), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(12): 120401.
[5] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[6] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[7] Rational solutions and interaction solutions for (2 + 1)-dimensional nonlocal Schrödinger equation
Mi Chen(陈觅) and Zhen Wang(王振). Chin. Phys. B, 2020, 29(12): 120201.
[8] Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation
Xiangyu Yang(杨翔宇), Zhao Zhang(张钊), and Biao Li(李彪)†. Chin. Phys. B, 2020, 29(10): 100501.
[9] Localized waves of the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics
Tao Xu(徐涛), Yong Chen(陈勇), Ji Lin(林机). Chin. Phys. B, 2017, 26(12): 120201.
[10] Localized waves in three-component coupled nonlinear Schrödinger equation
Tao Xu(徐涛), Yong Chen(陈勇). Chin. Phys. B, 2016, 25(9): 090201.
[11] Hamiltonian structure, Darboux transformation for a soliton hierarchy associated with Lie algebra so(4, C)
Wang Xin-Zeng (王新赠), Dong Huan-He (董焕河). Chin. Phys. B, 2015, 24(8): 080201.
[12] Rogue-wave pair and dark-bright-rogue wave solutions of the coupled Hirota equations
Wang Xin (王鑫), Chen Yong (陈勇). Chin. Phys. B, 2014, 23(7): 070203.
[13] Deformed soliton, breather, and rogue wave solutions of an inhomogeneous nonlinear Schrödinger equation
Tao Yong-Sheng (陶勇胜), He Jing-Song (贺劲松), K. Porsezian. Chin. Phys. B, 2013, 22(7): 074210.
[14] N-soliton solutions of an integrable equation studied by Qiao
Zhaqilao (扎其劳). Chin. Phys. B, 2013, 22(4): 040201.
[15] Lattice soliton equation hierarchy and associated properties
Zheng Xin-Qing (郑新卿), Liu Jin-Yuan (刘金元). Chin. Phys. B, 2012, 21(9): 090202.
No Suggested Reading articles found!