Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 090202    DOI: 10.1088/1674-1056/21/9/090202
GENERAL Prev   Next  

Lattice soliton equation hierarchy and associated properties

Zheng Xin-Qing (郑新卿)a, Liu Jin-Yuan (刘金元)b
a Personnel Department, Weifang University of Science and Technology, Weifang 261041, China;
b Department of Basic Courses, Weifang University of Science and Technology, Weifang 261041, China
Abstract  As a new subject, soliton theory is shown to be an effective tool for describing and explaining the nonlinear phenomena in nonlinear optics, super conductivity, plasma physics, magnetic fluid, etc. Thus, the study of soliton equations has always been one of the most prominent events in the field of nonlinear science during the past few years. Moreover, it is important to seek lattice soliton equation and study its properties. In this study, firstly, we derive a discrete integrable system by use of Tu model. Then, some properties of the obtained equation hierarchies are discussed.
Keywords:  discrete integrable system      Darboux transformation      conservation laws  
Received:  29 December 2011      Revised:  22 February 2012      Accepted manuscript online: 
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
  11.30.-j (Symmetry and conservation laws)  
Corresponding Authors:  Liu Jin-Yuan     E-mail:  liujinyuan2000@126.com

Cite this article: 

Zheng Xin-Qing (郑新卿), Liu Jin-Yuan (刘金元) Lattice soliton equation hierarchy and associated properties 2012 Chin. Phys. B 21 090202

[1] Tu G Z 1990 J. Phys. A: Math. Gen. 23 3903
[2] Wu Y T and Geng X G 1998 J. Phys. A: Math. Gen. 31 677
[3] Ma W X and Xu X X 2004 Inter. J. Theor. Phys. 43 219
[4] Yang H X and Xu X X 2005 Chin. Phys. 14 869
[5] Li Z 2009 Chin. Phys. B 18 850
[6] Yang H X 2005 Chaos, Solitons and Fract. 26 1091
[7] Cao C W and Zhang G Y 2012 Chin. Phys. Lett. 29 050202
[8] Li Z, Zhang N and Dong H H 2009 Chaos, Solitons and Fract. 39 1132
[9] Li Y S, Ma W X and Zhang J E 2000 Phys. Lett. A 275 60
[10] Dong H H and Zhang N 2006 Chin. Phys. 15 1919
[11] Xu X X 2007 Phys. Lett. A 362 205
[12] He G L and Geng X G 2012 Chin. Phys. B 21 070205
[1] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[2] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[3] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[4] Two integrable generalizations of WKI and FL equations: Positive and negative flows, and conservation laws
Xian-Guo Geng(耿献国), Fei-Ying Guo(郭飞英), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2020, 29(5): 050201.
[5] Rational solutions and interaction solutions for (2 + 1)-dimensional nonlocal Schrödinger equation
Mi Chen(陈觅) and Zhen Wang(王振). Chin. Phys. B, 2020, 29(12): 120201.
[6] Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation
Xiangyu Yang(杨翔宇), Zhao Zhang(张钊), and Biao Li(李彪)†. Chin. Phys. B, 2020, 29(10): 100501.
[7] An extension of integrable equations related to AKNS and WKI spectral problems and their reductions
Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2018, 27(4): 040201.
[8] A local energy-preserving scheme for Zakharov system
Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺). Chin. Phys. B, 2018, 27(2): 020202.
[9] Localized waves of the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics
Tao Xu(徐涛), Yong Chen(陈勇), Ji Lin(林机). Chin. Phys. B, 2017, 26(12): 120201.
[10] Localized waves in three-component coupled nonlinear Schrödinger equation
Tao Xu(徐涛), Yong Chen(陈勇). Chin. Phys. B, 2016, 25(9): 090201.
[11] A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
Han-yu Wei(魏含玉) and Tie-cheng Xia(夏铁成). Chin. Phys. B, 2016, 25(1): 010201.
[12] Multi-symplectic variational integrators for nonlinear Schrödinger equations with variable coefficients
Cui-Cui Liao(廖翠萃), Jin-Chao Cui(崔金超), Jiu-Zhen Liang(梁久祯), Xiao-Hua Ding(丁效华). Chin. Phys. B, 2016, 25(1): 010205.
[13] Hamiltonian structure, Darboux transformation for a soliton hierarchy associated with Lie algebra so(4, C)
Wang Xin-Zeng (王新赠), Dong Huan-He (董焕河). Chin. Phys. B, 2015, 24(8): 080201.
[14] Rogue-wave pair and dark-bright-rogue wave solutions of the coupled Hirota equations
Wang Xin (王鑫), Chen Yong (陈勇). Chin. Phys. B, 2014, 23(7): 070203.
[15] A novel hierarchy of differential–integral equations and their generalized bi-Hamiltonian structures
Zhai Yun-Yun (翟云云), Geng Xian-Guo (耿献国), He Guo-Liang (何国亮). Chin. Phys. B, 2014, 23(6): 060201.
No Suggested Reading articles found!