Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040201    DOI: 10.1088/1674-1056/22/4/040201
GENERAL   Next  

N-soliton solutions of an integrable equation studied by Qiao

Zhaqilao (扎其劳)
College of Mathematics Science, Inner Mongolia Normal University, Huhhot 010022, China
Abstract  In this paper, we studied N-soliton solutions of a new integrable equation studied by Qiao [J. Math. Phys. 48 082701 (2007)]. Firstly, we employed the Darboux matrix method to construct a Darboux transformation for the modified Korteweg-de Vries equation. Then we use the Darboux transformation and a transformation, introduced by Sakovich [J. Math. Phys. 52 023509 (2011)], to derive N-soliton solutions of the new integrable equation from the seed solution. In particular, the multiple soliton solutions are explicitly obtained and shown through some figures.
Keywords:  soliton solution      Darboux transformation      integrable equation  
Received:  09 August 2012      Revised:  08 October 2012      Accepted manuscript online: 
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11261037), the High Education Science Research Rund of China (Grant No. 211034), and the High Education Science Research Program of Inner Mongolia Autonomous Region, China (Grant No. NJ10045).
Corresponding Authors:  Zhaqilao     E-mail:  zhaqilao@imnu.edu.cn

Cite this article: 

Zhaqilao (扎其劳) N-soliton solutions of an integrable equation studied by Qiao 2013 Chin. Phys. B 22 040201

[1] Qiao Z J 2007 J. Math. Phys. 48 082701
[2] Qiao Z J and Liu L P 2009 Chaos, Solitons & Fractals 41 587
[3] Qiao Z J and Zhang G P 2006 Europhys. Lett. 73 657
[4] Li J B and Qiao Z J 2010 J. Math. Phys. 51 042703
[5] Sakovich S 2011 J. Math. Phys. 52 023509
[6] Sakovich S Y 2003 Phys. Lett. A 314 232
[7] Gu C H, Hu H S and Zhou Z X 2005 Darboux Transformations in Integrable Systems. Theory and Their Applications to Geometry (Dortrecht: Springer)
[8] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer)
[9] Rogers C and Schief W K 2002 Bäcklund and Darboux Transformations Geometry and Modern Applications in Soliton Theory (Cambrige: Cambrige University Press)
[10] Li Y S and Zhang J E 2003 Chaos, Solitons & Fractals 16 271
[11] Lin J, Ren B, Li H M and Li Y S 2008 Phys. Rev. E 77 036605
[12] Neugebauer G and Meinel R 1984 Phys. Lett. A 100 467
[13] Levi D, Neugebauer G and Meinel R 1984 Phys. Lett. A 102 1
[14] Geng X G and He G L 2010 J. Math. Phys. 51 033514
[15] Fan E G 2001 Commun. Theor. Phys. 36 401
[16] Li X M and Chen A H 2005 Phys. Lett. A 342 413
[17] Huang D J, Li D S and Zhang H Q 2007 Chaos, Solitons & Fractals 33 1677
[18] Zhaqilao and Li Z B 2009 J. Math. Anal. Appl. 359 794
[19] Zhaqilao and Sirendaoreji 2010 J. Math. Phys. 51 073501
[20] Zhaqilao and Sirendaoreji 2010 J. Math. Phys. 51 113507
[21] Hu H C, Tang X Y, Lou S Y and Liu Q P 2004 Chaos, Solitons & Fractals 22 327
[22] Li H Z, Tian B, Li L L, Zhang H Q and Xu T 2008 Phys. Scr. 78 065001
[23] Zhaqilao, Zhao Y L and Li Z B 2009 Chin. Phys. B 18 1780
[24] Zheng X Q and Liu J Y 2012 Chin. Phys. B 21 090202
[25] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press)
[1] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[2] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[3] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[4] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[5] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[6] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[7] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[8] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[9] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[10] Collapse arrest in the space-fractional Schrödinger equation with an optical lattice
Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍). Chin. Phys. B, 2021, 30(10): 104206.
[11] Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system
Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军). Chin. Phys. B, 2020, 29(7): 070502.
[12] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[13] Rational solutions and interaction solutions for (2 + 1)-dimensional nonlocal Schrödinger equation
Mi Chen(陈觅) and Zhen Wang(王振). Chin. Phys. B, 2020, 29(12): 120201.
[14] Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation
Xiangyu Yang(杨翔宇), Zhao Zhang(张钊), and Biao Li(李彪)†. Chin. Phys. B, 2020, 29(10): 100501.
[15] Multi-soliton solutions for the coupled modified nonlinear Schrödinger equations via Riemann-Hilbert approach
Zhou-Zheng Kang(康周正), Tie-Cheng Xia(夏铁成), Xi Ma(马茜). Chin. Phys. B, 2018, 27(7): 070201.
No Suggested Reading articles found!