|
|
Relativistic calculations of fine-structure energy levels of He-like Ar in dense plasmas |
Xiang-Fu Li(李向富)1,2, Gang Jiang(蒋刚)1,3 |
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; 2 College of Electrical Engineering, Longdong University, Qingyang 745000, China; 3 Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Chengdu 610065, China |
|
|
Abstract The fine-structure energy levels of 1s2s and 1s2p atomic states for the He-like Ar ion immersed in dense plasmas are calculated. The ion sphere model is used to describe the plasma screening effect on the tested ion. The influences of the hard sphere confinement and plasma screening on the fine-structure energy levels are investigated respectively. The calculated results show that the confined effect of the hard sphere on the fine-structure energy levels increases with decreasing hard sphere radius, and the plasma screening effect on the fine-structure energy levels increases with the increase of free electron density. In dense plasmas, the confined effect of the hard sphere on the fine-structure energy levels can be neglected generally, compared with the contribution from free electron screening. An interesting phenomenon about the energy level crossing is found among 1s2s (1S0) and 1s2p (3P0,1) atomic states. The results reported at the present work are useful for plasma diagnostics.
|
Received: 26 May 2018
Accepted manuscript online:
|
PACS:
|
31.15.ac
|
(High-precision calculations for few-electron (or few-body) atomic systems)
|
|
31.15.ag
|
(Excitation energies and lifetimes; oscillator strengths)
|
|
31.15.xr
|
(Self-consistent-field methods)
|
|
52.27.Gr
|
(Strongly-coupled plasmas)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11474208) and the Doctoral Science Foundation of Longdong University, China (Grant No. XYBY1704). |
Corresponding Authors:
Gang Jiang
E-mail: gjiang@scu.edu.cn
|
Cite this article:
Xiang-Fu Li(李向富), Gang Jiang(蒋刚) Relativistic calculations of fine-structure energy levels of He-like Ar in dense plasmas 2018 Chin. Phys. B 27 073101
|
[1] |
Son S K, Thiele R, Jurek Z, Ziaja B and Santra R 2014 Phys. Rev. X 4 031004
|
[2] |
Moses E I, Boyd R N, Remington B A, Keane C J and Al-Ayat R 2009 Phys. Plasmas 16 041006
|
[3] |
Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R, Decker F J, Ding Y, Dowell D, Edstrom S, Fisher A, Frisch J, Gilevich S, Hastings J, Hays G, Hering P, Huang Z, Iverson R, Loos H, Messerschmidt M, Miahnahri A, Moeller S, Nuhn H D, Pile G, Ratner D, Rzepiela J, Schultz D, Smith T, Stefan P, Tompkins H, Turner J, Welch J, White W, Wu J, Yocky G and Galayda J 2010 Nat. Photonics 4 641
|
[4] |
Ishikawa K L and Ueda K 2012 Phys. Rev. Lett. 108 033003
|
[5] |
Hoarty D J, Allan P, James S F, Brown C R D, Hobbs L M R, Hill M P, Harris J W O, Morton J, Brookes M G, Shepherd R, Dunn J, Chen H, Marley V E, Beiersdorfer P, Chung H K, Lee R W, Brown G and Emig J 2013 Phys. Rev. Lett. 110 265003
|
[6] |
Ciricosta O, Vinko S M, Chunget H K, Cho B I, Brown C R D, Burian T, Chalupsky J, Engelhorn K, Falcone R W, Graves C, Hajkova V, Higginbotham A, Juha L, Krzywinski J, Lee H J, Messerschmidt M,Murphy C D, Ping Y, Rackstraw D S, Scherz A, Schlotter W, Toleikis S, Turner J J, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee R W, Heimann P, Nagler B and Wark J S 2012 Phys. Rev. Lett. 109 065002
|
[7] |
Ciricosta O, Vinko S M, Barbrel B, Rackstraw D S, Preston T R, Burian T, Chalupský J, Cho B I, Chung H K, Dakovski G L, Engelhorn K, Hájková V, Heimann P, Holmes M, Juha L, Krzywinski J, Lee R W, Toleikis S, Turner J J, Zastrau U and Wark J S 2016 Nat. Commun. 7 11713
|
[8] |
Fletcher L B, Kritcher A L, Pak A, Ma T, Döppner T, Fortmann C, Divol L, Jones O S, Landen O L, Scott H A, Vorberger J, Chapman D A, Gericke D O, Mattern B A, Seidler G T, Gregori G, Falcone R W and Glenzer S H 2014 Phys. Rev. Lett. 112 145004
|
[9] |
Kraus D, Chapman D A, Kritcher A L, Baggott R A, Bachmann B, Collins G W, Glenzer S H, Hawreliak J A, Kalantar D H, Landen O L, Ma T, Pape S L, Nilsen J, Swift D C, Neumayer P, Falcone R W, Gericke D O and Döppner T 2016 Phys. Rev. E 94 011202(R)
|
[10] |
Ecker G and Kröll W 1963 Phys. Fluids 6 62
|
[11] |
Stewart J C and Jr Pyatt K D 1966 Astrophys. J. 144 1203
|
[12] |
Li X D and Rosmej F B 2012 J. Quant. Spectrosc. Ra. 113 680
|
[13] |
Belkhiri M and Poirier M 2013 High Energy Dens. Phys. 9 609
|
[14] |
Ichimaru S 1982 Rev. Mod. Phys. 54 1017
|
[15] |
Li X D and Rosmej F B 2010 Phys. Rev. A 82 022503
|
[16] |
Rozsnyai B F 1991 Phys. Rev. A 43 3035
|
[17] |
De M and Ray D 2015 Phys. Plasmas 22 054503
|
[18] |
Bhattacharyya S, Saha J K and Mukherjee T K 2015 Phys. Rev. A 91 042515
|
[19] |
Sil A N, Anton J, Fritzsche S, Mukherjee P K and Fricke B 2009 Eur. Phys. J. D 55 645
|
[20] |
Woolsey N C, Hammel B A, Keane C J, Back C A, Moreno J C, Nash J K, Calisti A, Mosse C, Stamm R, Talin B, Asfaw A, Klein L S and Lee R W 1998 Phys. Rev. E 57 4650
|
[21] |
Das M, Chaudhuri R K, Chattopadhyay S, Mahapatra U S and Mukherjee P 2011 J. Phys. B-At. Mol. Opt. 44 165701
|
[22] |
Grant I P 1994 Comput. Phys. Commun. 84 59
|
[23] |
Jönsson P, Gaigalas G, Bieroń J, Fischer C F and Grant I P 2013 Comput. Phys. Commun. 184 2197
|
[24] |
Jönsson P, He X, Fischer C F and Grant I P 2007 Comput. Phys. Commun. 177 597
|
[25] |
2010 J. Phys. Chem. Ref. Data 39 033101
|
[26] |
Montgomery H E and Pupyshev V I 2015 Theor. Chem. Acc. 134 1598
|
[27] |
Bhattacharyya S, Saha J K, Mukherjee P K and Mukherjee T K 2013 Phys. Scr. 87 065305
|
[28] |
Yakar Y, Akir B and Özmen A 2011 Int. J. Quantum Chem. 111 4139
|
[29] |
Sen K D 2005 J. Chem. Phys. 122 194324
|
[30] |
Chandra R, Dutta B, Saha JK, Bhattacharyya S and Mukherjee T K 2018 Int. J. Quantum Chem. e25597
|
[31] |
Saha J K, Bhattacharyya S and Mukherjee T K 2016 Int. J. Quantum Chem. 116 1802
|
[32] |
Saha J K, Bhattacharyya S and Mukherjee T K 2016 Commun. Theor. Phys. 65 347
|
[33] |
Belkhiri M and Fontes C J 2016 J. Phys. B-At. Mol. Opt. 49 175002
|
[34] |
Li X F, Jiang G, Wang H B and Sun Q 2017 Phys. Scr. 92 075401
|
[35] |
Das M, Sahoo B K and Pal S 2016 Phy. Rev. A 93 052513
|
[36] |
Salzmann D and Szichman H 1987 Phys. Rev. A 35 807
|
[37] |
Saha B and Fritzsche S 2007 J. Phys. B-At. Mol. Opt. 40 259
|
[38] |
Li Y Q, Wu J H, Hou Y and Yuan J M 2009 J. Phys. B-At. Mol. Opt. 42 235701
|
[39] |
Li X D, Xu Z and Rosmej F B 2006 J. Phys. B-At. Mol. Opt. 39 3373
|
[40] |
Li Y Q, Wu J H, Hou Y and Yuan J M 2008 J. Phys. B-At. Mol. Opt. 41 145002
|
[41] |
Li X F, Jiang G, Wang H B and Sun Q 2017 Chin. Phys. B 26 013101
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|