|
|
Isotope shift of the 2s 2S1/2 $\rightarrow$ 2p 2P1/2,3/2 transitions of Li-like Ca ions |
Denghong Zhang(张登红)†, Fangjun Zhang(张芳军), Xiaobin Ding(丁晓彬), and Chenzhong Dong(董晨钟) |
1 Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
|
|
Abstract The mass-and field-shift parameters of the two 2s 2S1/2 $\rightarrow$ 2p 2P1/2,3/2 transitions in the Li-like Ca ions are calculated by using multi-configuration Dirac-Hartree-Fock (MCDHF) and the relativistic configuration interaction (RCI) methods with the inclusion of the transverse photon (Breit) interaction, vacuum polarization and self-energy corrections. In addition, the mass shift and field shift of these two transitions are calculated, where the field shift is calculated by using the evaluated value $\delta\langle r^2\rangle$ obtained by [Atomic Data and Nuclear Data Tables 9969 (2013)]. It is found that the mass shift of Li-like Ca ions is greater than the field shift.
|
Received: 29 September 2020
Revised: 30 October 2020
Accepted manuscript online: 05 November 2020
|
PACS:
|
31.15.V-
|
(Electron correlation calculations for atoms, ions and molecules)
|
|
31.15.am
|
(Relativistic configuration interaction (CI) and many-body perturbation calculations)
|
|
31.30.J-
|
(Relativistic and quantum electrodynamic (QED) effects in atoms, molecules, and ions)
|
|
31.30.Gs
|
(Hyperfine interactions and isotope effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864036) and the Funds for Creative Research Groups of Gansu Province, China (Grant No. 20JR5RA541). |
Corresponding Authors:
†Corresponding author. E-mail: zhangdh@nwnu.edu.cn
|
Cite this article:
Denghong Zhang(张登红), Fangjun Zhang(张芳军), Xiaobin Ding(丁晓彬), and Chenzhong Dong(董晨钟) Isotope shift of the 2s 2S1/2 $\rightarrow$ 2p 2P1/2,3/2 transitions of Li-like Ca ions 2021 Chin. Phys. B 30 043102
|
1 Nörtershäuser W, Sànchez R, Ewald G, Dax A, Behr J, Bricault P, Bushaw B A, Dilling J, Dombsky M, Drake G W F, Götte S, Kluge H J, Kühl T, Lassen J, Levy C D P, Pachucki K, Pearson M, Puchalski M, Wojtaszek A, Yan Z C and Zimmermann C 2011 Phys. Rev. A 83 012516 2 Nörtershäuser W, Tiedemann D, \ifmmode \checkZ\else \vZ\fiàkovà M, Andjelkovic Z, Blaum K, Bissell M L, Cazan R, Drake G W F, Geppert C, Kowalska M, Krämer J, Krieger A, Neugart R, Sànchez R, Schmidt-Kaler F, Yan Z C, Yordanov D T and Zimmermann C 2009 Phys. Rev. Lett. 102 062503 3 Flambaum V V and Dzuba V A 2019 Phys. Rev. A 100 032511 4 Counts I, Hur J, Aude Craik D P L, Jeon H, Leung C, Berengut J C, Geddes A, Kawasaki A, Jhe W and Vuleti\ifmmode \acutec\else ć\fi V 2020 Phys. Rev. Lett. 125 123002 5 Berengut J C, Budker D, Delaunay C, Flambaum V V, Frugiuele C, Fuchs E, Grojean C, Harnik R, Ozeri R, Perez G and Soreq Y 2018 Phys. Rev. Lett. 120 091801 6 Fricke G, Bernhardt C, Heilig K, Schaller L, Schellenberg L, Shera E and Dejager C 1995 At. Data Nucl. Data Tables 60 177 7 Hofstadter R 1956 Rev. Mod. Phys. 28 214 8 Brockmeier R T, Boehm F and Hatch E N 1965 Phys. Rev. Lett. 15 132 9 Campbell P, Moore I and Pearson M 2016 Prog. Part. Nucl. Phys. 86 127 10 Charlwood F C, Billowes J, Campbell P, Cheal B, Eronen T, Forest D H, Fritzsche S, Honma M, Jokinen A and Moore I D 2010 Phys. Lett. B 690 346 11 Ohayon B, Rahangdale H, Geddes A J, Berengut J C and Ron G 2019 Phys. Rev. A 99 042503 12 Artemyev A N, Shabaev V M and Yerokhin V A 1995 Phys. Rev. A 52 1884 13 Artemyev A, Shabaev V and Yerokhin V 1995 J. Phys. B: At., Mol. Opt. Phys. 28 5201 14 Pachucki K, Patkò\ifmmode \checks\else \vs\fi V and Yerokhin V A 2017 Phys. Rev. A 95 062510 15 Shabaev V and Artemyev A 1994 J. Phys. B: At., Mol. Opt. Phys. 27 1307 16 Zubova N A, Kaygorodov M Y, Kozhedub Y S, Malyshev A V, Popov R V, Savelyev I M, Tupitsyn I I and Shabaev V M 2020 Opt. Spectrosc. 128 1090 17 Yan Z C and Drake G W F 2000 Phys. Rev. A 61 022504 18 Li J, Nazé C, Godefroid M, Fritzsche S, Gaigalas G, Indelicato P and Jönsson P 2012 Phys. Rev. A 86 022518 19 Zubova N A, Kozhedub Y S, Shabaev V M, Tupitsyn I I, Volotka A V, Plunien G, Brandau C and Stöhlker T 2014 Phys. Rev. A 90 062512 20 Kozhedub Y S, Volotka A V, Artemyev A N, Glazov D A, Plunien G, Shabaev V M, Tupitsyn I I and Stöhlker T 2010 Phys. Rev. A 81 042513 21 Zubova N A, Anisimova I S, Kaygorodov M Y, Kozhedub Y S, Malyshev A V, Shabaev V M, Tupitsyn I I, Plunien G, Brandau C and Stöhlker T 2019 J. Phys. B: At. Mol. Opt. Phys. 52 185001 22 Zhang X, Liu J P, Li J G and Zou H X 2019 Chin. Phys. Lett. 36 113101 23 Zubova N A, Malyshev A V, Tupitsyn I I, Shabaev V M, Kozhedub Y S, Plunien G, Brandau C and Stöhlker T 2016 Phys. Rev. A 93 052502 24 Silwal R, Lapierre A, Gillaspy J D, Dreiling J M, Blundell S A, Dipti, Borovik A, Gwinner G, Villari A C C, Ralchenko Y and Takacs E 2020 Phys. Rev. A 101 062512 25 Silwal R, Lapierre A, Gillaspy J D, Dreiling J M, Blundell S A, Dipti, Borovik A, Gwinner G, Villari A C C, Ralchenko Y and Takacs E 2018 Phys. Rev. A 98 052502 26 Kramida A 2020 At. Data Nucl. Data Tables 133-134 101322 27 Caurier E, Langanke K, Martìnez-Pinedo G, Nowacki F and Vogel P 2001 Phys. Lett. B 522 240 28 Hagen G, Hjorth-Jensen M, Jansen G R, Machleidt R and Papenbrock T 2012 Phys. Rev. Lett. 109 032502 29 Lucas D M, Ramos A, Home J P, McDonnell M J, Nakayama S, Stacey J P, Webster S C, Stacey D N and Steane A M 2004 Phys. Rev. A 69 012711 30 Andl A, Bekk K, Göring S, Hanser A, Nowicki G, Rebel H, Schatz G and Thompson R C 1982 Phys. Rev. C 26 2194 31 Kitaoka M and Hasegawa S 2012 J. Phys. B: At. Mol. Opt. Phys. 45 165008 32 Jönsson P, Ekman J and Trabert E 2015 Atoms 3 195 33 Gamrath S, Palmeri P, Quinet P, Bouazza S and Godefroid M 2018 J. Quant. Spectrosc. Radiat. Transfer 218 38 34 Filippin L, Beerwerth R, Ekman J, Fritzsche S, Godefroid M and Jönsson P 2016 Phys. Rev. A 94 062508 35 Li J, Jönsson P, Godefroid M, Dong C and Gaigalas G 2012 Phys. Rev. A 86 052523 36 Guo X L, Grumer J, Brage T, Si R, Chen C, Jonsson P, Wang K, Yan J, Hutton R and Zou Y 2016 J. Phys. B 49 135003 37 Ding X B, Sun R, Liu J X, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N and Dong C Z 2017 J. Phys. B: At. Mol. Opt. Phys. 50 045004 38 Ding X, Wu C, Cao M, Zhang D, Zhang M, Xue Y, Yu D and Dong C 2020 Chin. Phys. B 29 033101 39 Grant I P, McKenzie B J, Norrington P H, Mayers D F and Pyper N C 1980 Comput. Phys. Commun. 21 207 40 McKenzie B J, Grant I P and Norrington P H 1980 Comput. Phys. Commun. 21 233 41 Dyall K, Grant I, Johnson C, Parpia F and Plummer E 1989 Comput. Phys. Commun. 55 425 42 Parpia F A, Fischer C F and Grant I P 1996 Comput. Phys. Commun. 94 249 43 Jönsson P, Gaigalas G, Bieroń J, Fischer C F and Grant I 2013 Comput. Phys. Commun. 184 2197 44 Fischer C F, Gaigalas G, Jönsson P and Bieroń J 2019 Comput. Phys. Commun. 237 184 45 Ekman J, Jönsson P, Godefroid M, Nazé C, Gaigalas G and Bieroń J 2019 Comput. Phys. Commun. 235 433 46 Grant I P2007 Relativistic Quantum Theory of Atoms and Molecules, Theory and Computation(New York: Springer) 47 Blundell S, Baird P, Palmer C, Stacey D and Woodgate G 1987 J. Phys. B: At. Mol. Phys. 20 3663 48 [Online]https://physics.nist.gov/asd XXXX Kramida A, Yu Ralchenko and Reader J NIST ASD Team NIST Atomic Spectra Database (Ver. 5.7.1), 2019, .37 Available: Doschek G and Feldman U \hrefhttp://doi.org/10.1088/0953-4075/43/23/232001 2010 J. Phys. B: At. Mol. Opt. Phys. 43 232001 50 Johnson W R, Liu Z W and Sapirstein J 1996 At. Data Nucl. Data Tables 64 279 51 Das M, Sahoo B K and Pal S 2014 J. Phys. B: At. Mol. Opt. Phys. 47 175701 52 Angeli I and Marinova K P 2013 At. Data Nucl. Data Tables 99 69 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|