Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 043102    DOI: 10.1088/1674-1056/abc7a2
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Isotope shift of the 2s 2S1/2 $\rightarrow$ 2p 2P1/2,3/2 transitions of Li-like Ca ions

Denghong Zhang(张登红), Fangjun Zhang(张芳军), Xiaobin Ding(丁晓彬), and Chenzhong Dong(董晨钟)
1 Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
Abstract  The mass-and field-shift parameters of the two 2s 2S1/2 $\rightarrow$ 2p 2P1/2,3/2 transitions in the Li-like Ca ions are calculated by using multi-configuration Dirac-Hartree-Fock (MCDHF) and the relativistic configuration interaction (RCI) methods with the inclusion of the transverse photon (Breit) interaction, vacuum polarization and self-energy corrections. In addition, the mass shift and field shift of these two transitions are calculated, where the field shift is calculated by using the evaluated value $\delta\langle r^2\rangle$ obtained by [Atomic Data and Nuclear Data Tables 9969 (2013)]. It is found that the mass shift of Li-like Ca ions is greater than the field shift.
Keywords:  isotope shift      multi-configuration Dirac-Hartree-Fock (MCDHF)      mass shift      field shift  
Received:  29 September 2020      Revised:  30 October 2020      Accepted manuscript online:  05 November 2020
PACS:  31.15.V- (Electron correlation calculations for atoms, ions and molecules)  
  31.15.am (Relativistic configuration interaction (CI) and many-body perturbation calculations)  
  31.30.J- (Relativistic and quantum electrodynamic (QED) effects in atoms, molecules, and ions)  
  31.30.Gs (Hyperfine interactions and isotope effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864036) and the Funds for Creative Research Groups of Gansu Province, China (Grant No. 20JR5RA541).
Corresponding Authors:  Corresponding author. E-mail: zhangdh@nwnu.edu.cn   

Cite this article: 

Denghong Zhang(张登红), Fangjun Zhang(张芳军), Xiaobin Ding(丁晓彬), and Chenzhong Dong(董晨钟) Isotope shift of the 2s 2S1/2 $\rightarrow$ 2p 2P1/2,3/2 transitions of Li-like Ca ions 2021 Chin. Phys. B 30 043102

1 Nörtershäuser W, Sànchez R, Ewald G, Dax A, Behr J, Bricault P, Bushaw B A, Dilling J, Dombsky M, Drake G W F, Götte S, Kluge H J, Kühl T, Lassen J, Levy C D P, Pachucki K, Pearson M, Puchalski M, Wojtaszek A, Yan Z C and Zimmermann C 2011 Phys. Rev. A 83 012516
2 Nörtershäuser W, Tiedemann D, \ifmmode \checkZ\else \vZ\fiàkovà M, Andjelkovic Z, Blaum K, Bissell M L, Cazan R, Drake G W F, Geppert C, Kowalska M, Krämer J, Krieger A, Neugart R, Sànchez R, Schmidt-Kaler F, Yan Z C, Yordanov D T and Zimmermann C 2009 Phys. Rev. Lett. 102 062503
3 Flambaum V V and Dzuba V A 2019 Phys. Rev. A 100 032511
4 Counts I, Hur J, Aude Craik D P L, Jeon H, Leung C, Berengut J C, Geddes A, Kawasaki A, Jhe W and Vuleti\ifmmode \acutec\else ć\fi V 2020 Phys. Rev. Lett. 125 123002
5 Berengut J C, Budker D, Delaunay C, Flambaum V V, Frugiuele C, Fuchs E, Grojean C, Harnik R, Ozeri R, Perez G and Soreq Y 2018 Phys. Rev. Lett. 120 091801
6 Fricke G, Bernhardt C, Heilig K, Schaller L, Schellenberg L, Shera E and Dejager C 1995 At. Data Nucl. Data Tables 60 177
7 Hofstadter R 1956 Rev. Mod. Phys. 28 214
8 Brockmeier R T, Boehm F and Hatch E N 1965 Phys. Rev. Lett. 15 132
9 Campbell P, Moore I and Pearson M 2016 Prog. Part. Nucl. Phys. 86 127
10 Charlwood F C, Billowes J, Campbell P, Cheal B, Eronen T, Forest D H, Fritzsche S, Honma M, Jokinen A and Moore I D 2010 Phys. Lett. B 690 346
11 Ohayon B, Rahangdale H, Geddes A J, Berengut J C and Ron G 2019 Phys. Rev. A 99 042503
12 Artemyev A N, Shabaev V M and Yerokhin V A 1995 Phys. Rev. A 52 1884
13 Artemyev A, Shabaev V and Yerokhin V 1995 J. Phys. B: At., Mol. Opt. Phys. 28 5201
14 Pachucki K, Patkò\ifmmode \checks\else \vs\fi V and Yerokhin V A 2017 Phys. Rev. A 95 062510
15 Shabaev V and Artemyev A 1994 J. Phys. B: At., Mol. Opt. Phys. 27 1307
16 Zubova N A, Kaygorodov M Y, Kozhedub Y S, Malyshev A V, Popov R V, Savelyev I M, Tupitsyn I I and Shabaev V M 2020 Opt. Spectrosc. 128 1090
17 Yan Z C and Drake G W F 2000 Phys. Rev. A 61 022504
18 Li J, Nazé C, Godefroid M, Fritzsche S, Gaigalas G, Indelicato P and Jönsson P 2012 Phys. Rev. A 86 022518
19 Zubova N A, Kozhedub Y S, Shabaev V M, Tupitsyn I I, Volotka A V, Plunien G, Brandau C and Stöhlker T 2014 Phys. Rev. A 90 062512
20 Kozhedub Y S, Volotka A V, Artemyev A N, Glazov D A, Plunien G, Shabaev V M, Tupitsyn I I and Stöhlker T 2010 Phys. Rev. A 81 042513
21 Zubova N A, Anisimova I S, Kaygorodov M Y, Kozhedub Y S, Malyshev A V, Shabaev V M, Tupitsyn I I, Plunien G, Brandau C and Stöhlker T 2019 J. Phys. B: At. Mol. Opt. Phys. 52 185001
22 Zhang X, Liu J P, Li J G and Zou H X 2019 Chin. Phys. Lett. 36 113101
23 Zubova N A, Malyshev A V, Tupitsyn I I, Shabaev V M, Kozhedub Y S, Plunien G, Brandau C and Stöhlker T 2016 Phys. Rev. A 93 052502
24 Silwal R, Lapierre A, Gillaspy J D, Dreiling J M, Blundell S A, Dipti, Borovik A, Gwinner G, Villari A C C, Ralchenko Y and Takacs E 2020 Phys. Rev. A 101 062512
25 Silwal R, Lapierre A, Gillaspy J D, Dreiling J M, Blundell S A, Dipti, Borovik A, Gwinner G, Villari A C C, Ralchenko Y and Takacs E 2018 Phys. Rev. A 98 052502
26 Kramida A 2020 At. Data Nucl. Data Tables 133-134 101322
27 Caurier E, Langanke K, Martìnez-Pinedo G, Nowacki F and Vogel P 2001 Phys. Lett. B 522 240
28 Hagen G, Hjorth-Jensen M, Jansen G R, Machleidt R and Papenbrock T 2012 Phys. Rev. Lett. 109 032502
29 Lucas D M, Ramos A, Home J P, McDonnell M J, Nakayama S, Stacey J P, Webster S C, Stacey D N and Steane A M 2004 Phys. Rev. A 69 012711
30 Andl A, Bekk K, Göring S, Hanser A, Nowicki G, Rebel H, Schatz G and Thompson R C 1982 Phys. Rev. C 26 2194
31 Kitaoka M and Hasegawa S 2012 J. Phys. B: At. Mol. Opt. Phys. 45 165008
32 Jönsson P, Ekman J and Trabert E 2015 Atoms 3 195
33 Gamrath S, Palmeri P, Quinet P, Bouazza S and Godefroid M 2018 J. Quant. Spectrosc. Radiat. Transfer 218 38
34 Filippin L, Beerwerth R, Ekman J, Fritzsche S, Godefroid M and Jönsson P 2016 Phys. Rev. A 94 062508
35 Li J, Jönsson P, Godefroid M, Dong C and Gaigalas G 2012 Phys. Rev. A 86 052523
36 Guo X L, Grumer J, Brage T, Si R, Chen C, Jonsson P, Wang K, Yan J, Hutton R and Zou Y 2016 J. Phys. B 49 135003
37 Ding X B, Sun R, Liu J X, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N and Dong C Z 2017 J. Phys. B: At. Mol. Opt. Phys. 50 045004
38 Ding X, Wu C, Cao M, Zhang D, Zhang M, Xue Y, Yu D and Dong C 2020 Chin. Phys. B 29 033101
39 Grant I P, McKenzie B J, Norrington P H, Mayers D F and Pyper N C 1980 Comput. Phys. Commun. 21 207
40 McKenzie B J, Grant I P and Norrington P H 1980 Comput. Phys. Commun. 21 233
41 Dyall K, Grant I, Johnson C, Parpia F and Plummer E 1989 Comput. Phys. Commun. 55 425
42 Parpia F A, Fischer C F and Grant I P 1996 Comput. Phys. Commun. 94 249
43 Jönsson P, Gaigalas G, Bieroń J, Fischer C F and Grant I 2013 Comput. Phys. Commun. 184 2197
44 Fischer C F, Gaigalas G, Jönsson P and Bieroń J 2019 Comput. Phys. Commun. 237 184
45 Ekman J, Jönsson P, Godefroid M, Nazé C, Gaigalas G and Bieroń J 2019 Comput. Phys. Commun. 235 433
46 Grant I P2007 Relativistic Quantum Theory of Atoms and Molecules, Theory and Computation(New York: Springer)
47 Blundell S, Baird P, Palmer C, Stacey D and Woodgate G 1987 J. Phys. B: At. Mol. Phys. 20 3663
48 [Online]https://physics.nist.gov/asd XXXX Kramida A, Yu Ralchenko and Reader J NIST ASD Team NIST Atomic Spectra Database (Ver. 5.7.1), 2019, .37 Available: Doschek G and Feldman U \hrefhttp://doi.org/10.1088/0953-4075/43/23/232001 2010 J. Phys. B: At. Mol. Opt. Phys. 43 232001
50 Johnson W R, Liu Z W and Sapirstein J 1996 At. Data Nucl. Data Tables 64 279
51 Das M, Sahoo B K and Pal S 2014 J. Phys. B: At. Mol. Opt. Phys. 47 175701
52 Angeli I and Marinova K P 2013 At. Data Nucl. Data Tables 99 69
[1] Theoretical calculations of hyperfine splitting, Zeeman shifts, and isotope shifts of 27Al+ and logical ions in Al+ clocks
Xiao-Kang Tang(唐骁康), Xiang Zhang(张祥), Yong Shen(沈咏), and Hong-Xin Zou(邹宏新). Chin. Phys. B, 2021, 30(12): 123204.
[2] Uncertainty evaluation of the isotope shift factors for 2s2p3,1P1o-2s21S0 transitions in B II
Jianpeng Liu(刘建鹏), Jiguang Li(李冀光), Hongxin Zou(邹宏新). Chin. Phys. B, 2017, 26(2): 023104.
[3] Absorption spectra and isotope shifts of the (2, 0), (3, 1), and (8, 5) bands of the A2Πu–X2g+ system of 15N2+ in near infrared
Jia Ye(叶佳), Hailing Wang(汪海玲), Lunhua Deng(邓伦华). Chin. Phys. B, 2017, 26(10): 103102.
[4] Isotope shift calculations for D lines of stable and short-lived lithium nuclei
Geng-Hua Yu(余庚华), Peng-Yi Zhao(赵朋义), Bing-Ming Xu(徐炳明), Wei Yang(杨维), Xiao-Ling Zhu(朱晓玲). Chin. Phys. B, 2016, 25(11): 113102.
[5] A novel method to measure the isotope shifts and hyperfine splittings of all ytterbium isotopes for a 399-nm transition
Wang Wen-Li(王文丽) and Xu Xin-Ye(徐信业). Chin. Phys. B, 2010, 19(12): 123202.
[6] Isotopic effect of Cl2+ rovibronic spectra in the A-X system
Wu Ling(吴玲), Yang Xiao-Hua(杨晓华), and Chen Yang-Qin(陈扬骎). Chin. Phys. B, 2009, 18(7): 2724-2728.
[7] Measurement of hyperfine structure and isotope shifts in the 580.56nm line of 142-145,146,148,150Nd+
Ma Hong-Liang (马洪良). Chin. Phys. B, 2005, 14(3): 511-515.
No Suggested Reading articles found!