|
|
Transition parameters of Li-like ions (Z=7-11) in dense plasmas |
Xiang-Fu Li(李向富)1,†, Li-Ping Jia(贾利平)1, Hong-Bin Wang(王宏斌)2, and Gang Jiang(蒋刚)3 |
1 College of Electrical Engineering, Longdong University, Qingyang 745000, China; 2 College of Science, Xi'an University of Posts&Telecommunications, Xi'an 710121, China; 3 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China |
|
|
Abstract The energy levels, transition energies, transition probabilities, weighted oscillator strengths, and line strengths of Li-like ions ($Z=7$-11) in dense plasmas are investigated in this work. The relativistic effects and electron correlation effects are described by the MCDHF method. The ion sphere model is applied to include the dense plasma screening effect. The ground configuration $\text{1s}^2\text{2s}$ and the excited $\text{1s}^2\text{2p}$, $\text{1s}^2{3}l$ ($l=0$-2) are considered. The configuration sets are enlarged until $n=7$ where the calculated energy levels have converged. The critical free electron densities of $\text{1s}^2\text{3d}$ states are estimated. Except for $\text{1s}^2\text{3s}$-$\text{1s}^2\text{3p}$ transitions, the transition energies for $\Delta n = 0$ increase, and for $\Delta n \neq 0$ decrease with increasing free electron densities. For $\text{1s}^2\text{3s}$-$\text{1s}^2\text{3p}$ transitions, the spectra show blue-shift at lower free electron densities and red-shift at higher free electron densities, and the energy level crossing phenomens are observed at higher free electron densities.
|
Received: 13 October 2020
Revised: 07 February 2021
Accepted manuscript online: 01 March 2021
|
PACS:
|
31.15.ac
|
(High-precision calculations for few-electron (or few-body) atomic systems)
|
|
31.15.ag
|
(Excitation energies and lifetimes; oscillator strengths)
|
|
31.15.xr
|
(Self-consistent-field methods)
|
|
52.27.Gr
|
(Strongly-coupled plasmas)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11847163), the Natural Science Foundation of Gansu Province (Grant No. 20JR10RA131), the Doctoral Science Foundation of Longdong University (Grant No. XYBY202005), the Natural Science Foundation of Shaanxi Province (Grant No. 2021JQ-698), and the Special Project of Department of Education of Shaanxi Province (Grant No. 18JK0710). |
Corresponding Authors:
Xiang-Fu Li
E-mail: lixf808@163.com
|
Cite this article:
Xiang-Fu Li(李向富), Li-Ping Jia(贾利平), Hong-Bin Wang(王宏斌), and Gang Jiang(蒋刚) Transition parameters of Li-like ions (Z=7-11) in dense plasmas 2021 Chin. Phys. B 30 053102
|
[1] Das M, Sahoo B K and Pal S 2016 Phys. Rev. A 93 052513 [2] Li X F, Jiang G, Wang H B and Sun Q 2017 Chin. Phys. B 26 013101 [3] Singh N, Goyal A and Chaurasia S 2018 Radiation Physics and Chemistry 146 105 [4] Chen Z B 2019 Journal of Electron Spectroscopy and Related Phenomena 236 12 [5] Li X, Rosmej F B, Lisitsa V S and Astapenko V A 2019 Phys. Plasmas 26 033301 [6] Hoarty D J, Allan P, James S F, et al. 2013 Phys. Rev. Lett. 110 265003 [7] Ciricosta O, Vinko S M, Chung H K, et al. 2012 Phys. Rev. Lett. 109 065002 [8] Fletcher L B, Kritcher A L, Pak A, et al. 2014 Phys. Rev. Lett. 112 145004 [9] Kraus D, Chapman D A, Kritcher A L, et al. 2016 Phys. Rev. E 94 011202(R) [10] Kraus D, Bachmann B, Barbrel B, et al. 2019 Plasma Phys. Control. Fusion 61 014015 [11] Stewart J C and Pyatt K D 1966 Astrophys. J. 144 1203 [12] Ecker G and Kröll W 1963 Phys. Fluids 6 62 [13] Vinko S M, Ciricosta O and Wark J S 2014 Nat. Commun. 5 3533 [14] Crowley B J B 2014 High Energy Density Phys. 13 84 [15] Son S K, Thiele R, Jurek Z, Ziaja B and Santra R 2014 Phys. Rev. X 4 031004 [16] Lin C, Röpke G, Kraeft W and Reinholz H 2017 Phys. Rev. E 96 013202 [17] Faussurier G and Blancard C 2018 Phys. Rev. E 97 023206 [18] Rosmej F B 2018 J. Phys. B: At. Mol. Opt. Phys. 51 09LT01 [19] Lin C L, Ropke G, Reinholz H and Kraeft W D 2017 Contrib. Plasma Phys. 57 518 [20] Ropke G, Blaschke D, D$\mathop {\rm{p}}\limits^{..} $pner T, Lin C, Kraeft W, Redmer R and Reinholz H 2019 Phys. Rev. E 99 033201 [21] Iglesias C A 2014 High Energy Density Phys. 12 5 [22] Kawachi T, Fujimoto T and Csanak G 1995 Phys. Rev. E 51 1428 [23] Nahar S N, Pradhan A K and Zhang H L 2000 Astrophys. J. Suppl. Ser. 131 375 [24] Gorczyca T W, Dumitriu I, Hasoglu M F, Korista K T, Badnell N R, Savin D W and Manson S T 2006 Astrophys. J. Lett. 638 L121 [25] Suckewer S, Eubank H P, Goldston R J, McEnerney J, Sauthoff N R and Towner H H 1981 Nucl. Fusion 21 1301 [26] Godefroid M and Fischer C F 1984 J. Phys. B 17 681 [27] Das G C and Sarma 1998 J. Phys. Plasmas 5 3918 [28] Mondal P K, Dutta N N, Dixit G and Majumder S 2013 Phys. Rev. A 87 062502 [29] Aschke L 2000 Contrib. Plasma Phys. 40 72 [30] Xu Z, Fan P, Zhang Z, Chen S, Lin L,Lu P, Wang X, Qian A, Yu J, Sun L and Wu M 1990 Appl. Phys. Lett. 56 2370 [31] Boiko V A, Brunetkin B A, Faenov A Y, Hahalin S Y, Skobelev I Y and Shilov K A 1984 Phys. Scr. 30 59 [32] Peng F, Jiang G and Zhu Z H 2006 Chin. Phys. Lett. 23 3245 [33] Mondal P K, Dutta N N, Dixit G and Majumder S 2013 Phys. Rev. A 87 062502 [34] Yu X M, Cheng S B, Yi Y G, Zhang J Y, Pu Y D, Zhao Y, Hu F, Yang J M and Zheng Z J 2011 Acta Phys. Sin. 60 085201 (in Chinese) [35] Madhulita D, Chaudhuri R K and Chattopadhyay S 2012 Phys. Rev. A 85 042506 [36] Lee R W, Matthews D L and Scofield J 1981 J. Phys. B: At. Mol. Phys. 14 3079 [37] Qi Y Y, Wu Y and Wang J G 2009 Phys. Plasmas 16 033507 [38] Sahoo S and Ho Y K 2006 Phys. Plasmas 13 063301 [39] Mehdipour M, Kaastra J S and Raassen A J J 2015 Astronomy & Astrophysics 579 A87 [40] Das M, Sahoo B K and Pal S 2014 J. Phys. B: At. Mol. Opt. Phys. 47 175701 [41] Ichimaru S 1982 Rev. Mod. Phys. 54 1017 [42] Li X F and Jiang G 2018 Chin. Phys. B 27 073101 [43] Bhattacharyya S, Saha J K and Mukherjee T K 2015 Phys. Rev. A 91 042515 [44] Sil A N, Anton J, Fritzsche S, Mukherjee P K and Fricke B 2009 Eur. Phys. J. D 55 645 [45] Salzmann D and Szichman H 1987 Phys. Rev. A 35 807 [46] Saha B and Fritzsche S 2007 J. Phys. B: At. Mol. Opt. 40 259 [47] Li Y Q, Wu J H, Hou Y and Yuan J M 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235701 [48] Li X, Xu Z and Rosmej F B 2006 J. Phys. B: At. Mol. Opt. Phys. 39 [49] Li Y Q, Wu J H, Hou Y and Yuan J 2008 J. Phys. B: At. Mol. Opt. Phys. 41 145002 [50] Li X F, Jiang G, Wang H B and Sun Q 2017 Chin. Phys. B 26 013101 [51] Grant I P, McKenzie B J, Norrington P H, Mayers D F and Pyper N C 1980 Comput. Phys. Commun. 21 207 [52] Dyall K G, Grant I P, Johnson C T, Parpia F A and Plummer E P 1989 Comput. Phys. Commun. 55 425 [53] Grant I P 1970 Adv. Phys. 19 747 [54] Chen Z, Sang C and Wang K 2019 Journal of Quantitative Spectroscopy & Radiative Transfer 225 76 [55] Olsen J, Godefroid M R, Jönsson P, Malmqvist P and Fischer C F 1995 Phys. Rev. E 52 4499 [56] Grant I P 1994 Comput. Phys. Commun. 84 59 [57] Jönsson P, Gaigalas G, Bieroń J, Fischer C F and Grant I P 2013 Comput. Phys. Commun. 184 2197 [58] Jönsson P, He X, Fischer C F and Grant I P 2007 Comput. Phys. Commun. 177 597 [59] https://www.nist.gov/pml/atomic-spectra-database [60] Iglesias C A and Sterne P A 2013 High Energy Density Phys. 9 103 [61] Li X, Zheng X, Deng P and Jiang G 2018 Eur. Phys. J. D 72 176 [62] Madhulita D, Madhusmita D, Rajat K C and Sudip C 2012 Phys. Rev. A 85 042506 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|