Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, China
Abstract The rectification transport of a single vibration-driven self-propelled vehicle in a two-dimensional left-right asymmetric channel was experimentally investigated. The rectification efficiency of the vehicle moving from the center to the exit was statistically obtained for the range of channel widths, inter-channel asymmetry degrees, and platform tilt angles. The trajectory of its movement was also analyzed. It was found that the structure of the channel provides the main influence. Different channel shapes lead to different ranges of unfavorable widths, and transport efficiency decreases when the asymmetry diminishes — the two channels converge. The addition of external gravity does not counteract the structural limitations, but only affects the probability of departure.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12075090).
Corresponding Authors:
Feng-Guo Li
E-mail: lifengguo@m.scnu.edu.cn
Cite this article:
Yu-Wen Hao(郝钰文), Bao-Quan Ai(艾保全), Fei Tan(谭飞), Xiao-Yuan Yu(余孝源), and Feng-Guo Li(李丰果) Rectified transport of a single vibration-driven vehicle in the asymmetric channel 2023 Chin. Phys. B 32 110203
[1] Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Simha R A 2013 Rev. Mod. Phys.85 1143 [2] Elgeti J, Winkler R G and Gompper G 2015 Reports on Progress in Physics78 056601 [3] Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys.88 045006 [4] Vicsek T and Zafeiris A 2012 Physics Reports517 71 [5] Chen J X, Chen Y G and Kapral R 2018 Advanced Science5 1800028 [6] Aranson I S and Pikovsky A 2022 Phys. Rev. Lett.128 108001 [7] Cates M E 2012 Reports on Progress in Physics75 042601 [8] Hu G C, Zhang Z, Li Y, Ren J F and Wang C 2016 Chin. Phys. B25 057308 [9] Kaiser A, Peshkov A, Sokolov A, Ten Hagen B, Löwen H and Aranson I S 2014 Phys. Rev. Lett.112 158101 [10] Bricard A, Caussin J B, Desreumaux N, Dauchot O and Bartolo D 2013 Nature503 95 [11] Ghosh P K, Li Y, Marchesoni F and Nori F 2015 Phys. Rev. E92 012114 [12] Costanzo A, Elgeti J, Auth T, Gompper G and Ripoll M 2014 Europhys. Lett.107 36003 [13] Ai B Q, He Y F and Zhong W R 2015 Soft Matter11 3852 [14] Berdakin I, Jeyaram Y, Moshchalkov V, Venken L, Dierckx S, Vanderleyden S, Silhanek A, Condat C and Marconi V I 2013 Phys. Rev. E87 052702 [15] Cui R F, Chen Q H and Chen J X 2020 Nanoscale12 12275 [16] Jing G, Zöttl A, Clément É and Lindner A 2020 Science Advances6 eabb2012 [17] Zhu W J, Huang X Q and Ai B Q 2018 Chin. Phys. B27 080504 [18] Stenhammar J, Wittkowski R, Marenduzzo D and Cates M E 2015 Phys. Rev. Lett.114 018301 [19] Buttinoni I, Bialké J, Kümmel F, Löwen H, Bechinger C and Speck T 2013 Phys. Rev. Lett.110 238301 [20] Stenhammar J, Marenduzzo D, Allen R J and Cates M E 2014 Soft Matter10 1489 [21] Kaiser A, Wensink H and Löwen H 2012 Phys. Rev. Lett.108 268307 [22] Wioland H, Woodhouse F G, Dunkel J, Kessler J O and Goldstein R E 2013 Phys. Rev. Lett.110 268102 [23] Rusconi R, Guasto J S and Stocker R 2014 Nat. Phys.10 212 [24] Lou X, Yang Q, Ding Y, Liu P, Chen K, Zhou X, Ye F, Podgornik R and Yang M 2022 Proc. Natl. Acad. Sci. USA119 e2201279119 [25] Tian W D, Gu Y, Guo Y K and Chen K 2017 Chin. Phys. B26 100502 [26] Ten Hagen B, Kümmel F, Wittkowski R, Takagi D, Löwen H and Bechinger C 2014 Nat. Commun.5 4829 [27] Huang X Q and An M 2018 Physica A491 771 [28] Reichhardt C O and Reichhardt C 2017 Annual Review of Condensed Matter Physics8 51 [29] Galajda P, Keymer J, Chaikin P and Austin R 2007 Journal of Bacteriology189 8704 [30] Li H and Zhang H 2013 Europhys. Lett.102 50007 [31] Schwarz-Linek J, Valeriani C, Cacciuto A, Cates M, Marenduzzo D, Morozov A and Poon W 2012 Proc. Natl. Acad. Sci. USA109 4052 [32] Sokolov A, Apodaca M M, Grzybowski B A and Aranson I S 2010 Proc. Natl. Acad. Sci. USA107 969 [33] Wan M, Reichhardt C O, Nussinov Z and Reichhardt C 2008 Phys. Rev. Lett.101 018102 [34] Huang S N, Zhu W J, Huang X Q, Ai B Q and Li F G 2019 Chin. Phys. B28 040502 [35] Li Y, Ghosh P K, Marchesoni F and Li B 2014 Phys. Rev. E90 062301 [36] Ai B Q 2016 Scientic Reports6 1 [37] Wu J C, Lv K, Zhao W W and Ai B Q 2018 Chaos28 123102 [38] Ai B Q, Zhu W J, He Y F and Zhong W R 2017 J. Stat. Mech.:Theo. Exper.2017 023501 [39] Lu S C, Ou Y L and Ai B Q 2017 Physica A482 501 [40] Patterson G A, Fierens P I, Jimka F S, König P, Garcimartín A, Zuriguel I, Pugnaloni L A and Parisi D R 2017 Phys. Rev. Lett.119 248301 [41] Bobadilla L, Gossman K and LaValle S M 2012 Robot Motion and Control 2011 p. 273 [42] Dauchot O and Démery V 2019 Phys. Rev. Lett.122 068002 [43] Tapia-Ignacio C, Gutierrez-Martinez L L and Sandoval M 2021 J. Stat. Mech.:Theo. Exper.2021 053404 [44] Barois T, Boudet J F, Lintuvuori J S and Kellay H 2020 Phys. Rev. Lett.125 238003
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.