Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 110501    DOI: 10.1088/1674-1056/acedf4
GENERAL Prev   Next  

Quasi-synchronization of fractional-order complex networks with random coupling via quantized control

Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为)
School of Electronics and Information Engineering, Anhui University, Hefei 230601, China
Abstract  We investigate the quasi-synchronization of fractional-order complex networks (FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a new quantized feedback controller, which can make all nodes of complex networks quasi-synchronization and eliminate the disturbance of random coupling in the system state, is designed under non-delay conditions. Secondly, we extend the theoretical results under non-delay conditions to time-varying delay conditions and design another form of quantization feedback controller to ensure that the network achieves quasi-synchronization. Furthermore, the error bound of quasi-synchronization is obtained. Finally, we verify the accuracy of our results using two numerical simulation examples.
Keywords:  complex network      fractional-order      random coupling      time-varying delay      quasi-synchronization      quantized control  
Received:  18 April 2023      Revised:  26 July 2023      Accepted manuscript online:  08 August 2023
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  02.30.Yy (Control theory)  
  45.10.Hj (Perturbation and fractional calculus methods)  
Fund: The work was supported by the Anhui Provincial Development and Reform Commission New Energy Vehicles and Intelligent Connected Automobile Industry Technology Innovation Project.
Corresponding Authors:  Dawei Ding     E-mail:  dwding@ahu.edu.cn

Cite this article: 

Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为) Quasi-synchronization of fractional-order complex networks with random coupling via quantized control 2023 Chin. Phys. B 32 110501

[1] Albert R and Barabasi A 2002 Rev. Mod. Phys. 74 47
[2] Philipp H, Aline V and Philipp L 2018 J. Nonlinear Sci. 30 2259
[3] Li X R, Liu J Q and Dong J C2021 IEEE Trans. Circuits Syst. I:Regular Papers 68 4268
[4] Huang L L, Zhang Y, Xiang J and Liu J 2022IEEE Trans. Circuits Syst. I!I:Express Briefs 69 4568
[5] Liu Y Y and Slotine J J 2011 Nature 473 167
[6] Rosvall M and Bergstrom C T 2008 Proc. Natl. Acad. Sci. USA 105 1118
[7] Wang L and Wang P 2015 Int. J. Mod. Phys. C 26 1550052
[8] Russo G 2018 Int. J. Robust Nonlinear Control 28 120
[9] Shakibian H and Charkari N M 2016 2016 24th Iranian Conference on Electrical Engineering (ICEE), May 10-12, 2016, Shiraz, Iran, pp. 682-686
[10] Huang L L, Li W Y, Xiang J H and Zhu G L 2022 Eur. Phys. J. Spec. Top. 231 3109
[11] Yang F, Li H, Guo C, Xia D and Qi H 2018 Neural Comput. Appl. 31 7945
[12] Ding X S, Cao J D and Alsaadi F E 2019 Int. J. Adaptive Control Signal Process. 33 1478
[13] Mwanandiye E S, Wu B and Jia Q 2020 Neural Comput. Appl. 32 11277
[14] Ding D W, Yan J, Wang N and Liang D 2017 Chaos, Solitons Fractals 104 41
[15] He W L, Qian F, Lam J, Chen G and Han Q L 2015 Automatica 62 249
[16] Xu L G, Chu X Y and Hu H X 2021 Math. Comput. Simul. 185 594
[17] Yang S A, Yu J, Cheng H and Jiang H J 2018 Neural Networks 104 104
[18] Machado J T, Kiryakova V and Mainardi F 2011Commun. Nonlinear Sci. Numerical Simul. 16 1140
[19] Aguila C and Duarte M A 2014 Commun. Nonlinear Sci. Numerical Simul. 19 2951
[20] Hartley T T, Lorenzo C F and Qammer H K 1995 IEEE Trans. Circuits Syst. I:Fundam. Theory Appl. 42 485
[21] Saadatmandi A and Dehghan M 2010 Comput. Math. Appl. 59 1326
[22] Sun H G, Zhang Y, Baleanu D, Chen W and Chen Y G 2018 Commun. Nonlinear Sci. Numerical Simul. 64 213
[23] Magin R L 2010 Comput. Math. Appl. 59 1586
[24] Ding D W, Yao X L and Zhang H W 2019 Mod. Phys. Lett. B 33 1950351
[25] Bao H B, Park J H and Cao J D 2021 IEEE Trans. Neural Networks Learning Syst. 32 3230
[26] Xu Y, Wang Q, Li W X and Feng J Q 2021 Math. Methods Appl. Sci. 69 1539
[27] He J J, Chen H, Ge M F and Ding T F 2021 Neurocomputing 431 90
[28] Hu J T, Sui G X and Li X D 2020 Chaos, Solitons Fractals 140 110216
[29] Li C G and Chen G R 2004 Physica A 343 263
[30] Wu Y Q and Liu L 2015 Entropy 17 3097
[31] Hang L H and Wu X R 2019 Neural Process. Lett. 50 2373
[32] Li W Y, Zhou J, Li J Q and Xie T 2021 IEEE Trans. Circuits Syst. I!$I:Express Briefs 68 1338
[33] Zhang L L, Zhong J and Lu J 2021 Neural Networks 144 11
[34] Zhang Q J, Luo J and Li W 2013 Nonlinear Dyn. 71 353
[35] Brockett R and Liberzon D 2000 IEEE Trans. Automat. Control 45 1279
[36] Niu Y G and Daniel W H 2014 Automatica 50 2665
[37] Shi Y J and Ma Y 2021 Electron. Res. Arch. 29 2047
[38] Xu C, Yang X S, Lu J Q and Feng J W 2018 IEEE Trans. Cybernet. 48 3021
[1] Important edge identification in complex networks based on local and global features
Jia-Hui Song(宋家辉). Chin. Phys. B, 2023, 32(9): 098901.
[2] Self-similarity of complex networks under centrality-based node removal strategy
Dan Chen(陈单), Defu Cai(蔡德福), and Housheng Su(苏厚胜). Chin. Phys. B, 2023, 32(9): 098903.
[3] Synchronization of stochastic complex networks with time-delayed coupling
Duolan(朵兰), Linying Xiang(项林英), and Guanrong Chen(陈关荣). Chin. Phys. B, 2023, 32(6): 060502.
[4] Stability and multistability of synchronization in networks of coupled phase oscillators
Yun Zhai(翟云), Xuan Wang(王璇), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2023, 32(6): 060503.
[5] Identification of key recovering node for spatial networks
Zijian Yan(严子健), Yongxiang Xia(夏永祥), Lijun Guo(郭丽君), Lingzhe Zhu(祝令哲), Yuanyuan Liang(梁圆圆), and Haicheng Tu(涂海程). Chin. Phys. B, 2023, 32(6): 068901.
[6] AG-GATCN: A novel method for predicting essential proteins
Peishi Yang(杨培实), Pengli Lu(卢鹏丽), and Teng Zhang(张腾). Chin. Phys. B, 2023, 32(5): 058902.
[7] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[8] Detection of EEG signals in normal and epileptic seizures with multiscale multifractal analysis approach via weighted horizontal visibility graph
Lu Ma(马璐), Yan-Lin Ren(任彦霖), Ai-Jun He(何爱军), De-Qiang Cheng(程德强), and Xiao-Dong Yang(杨小冬). Chin. Phys. B, 2023, 32(11): 110506.
[9] SLGC: Identifying influential nodes in complex networks from the perspectives of self-centrality, local centrality, and global centrality
Da Ai(艾达), Xin-Long Liu(刘鑫龙), Wen-Zhe Kang(康文哲), Lin-Na Li(李琳娜), Shao-Qing Lü(吕少卿), and Ying Liu(刘颖). Chin. Phys. B, 2023, 32(11): 118902.
[10] Effect of conformity on evolution of cooperation in a coordination game
Xianjia Wang(王先甲) and Tao Wang(王饕). Chin. Phys. B, 2023, 32(10): 100202.
[11] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[12] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[13] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[14] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[15] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
No Suggested Reading articles found!