Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 100509    DOI: 10.1088/1674-1056/aceeec
GENERAL Prev   Next  

High-order effect on the transmission of two optical solitons

Houhui Yi(伊厚会)1, Yanli Yao(姚延立)2, Xin Zhang(张鑫)2, and Guoli Ma(马国利)2,†
1 School of Intelligent Manufacturing, Weifang University of Science and Technology, Weifang 262700, China;
2 Institute of Aeronautical Engineering, Binzhou University, Binzhou 256603, China
Abstract  For optical solitons with the pulse width in the subpicosecond and femtosecond scales in optical fibers, a modified model containing higher-order effects such as third-order dispersion and third-order nonlinearity is needed. In this paper, in order to study the dynamic mechanism of femtosecond solitons in different media, we take the nonlinear Schrödinger equation considering higher-order effects as the theoretical model, discuss the propagation of solitons in single-mode fibers, and explore the third-order dispersion and third-order nonlinear effects on the generation of optical solitons. The exact solution of the theoretical model is obtained through the bilinear method, and the transmission characteristics of two solitons with exact soliton solutions in actual fiber systems are analyzed and studied. The influence of various conditions on the transmission and interaction of optical solitons is explored. Methods for optimizing the transmission characteristics of optical solitons in optical communication systems are suggested. The relevant conclusions of this paper have guiding significance for improving the quality of fiber optic communication and increasing bit rates.
Keywords:  nonlinear optics      optical communication system      optical solitons      solitons interaction  
Received:  13 July 2023      Revised:  31 July 2023      Accepted manuscript online:  10 August 2023
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Project supported by the Scientific Research Foundation of Weifang University of Science and Technology (Grant No. KJRC2022002), the Shandong Province Higher Educational Science and Technology Program (Grant No. J18KB108), and the Research start-up fees for doctoral degree holders and senior professional title holders with master's degrees of Binzhou University (Grant No. 2022Y12).
Corresponding Authors:  Guoli Ma     E-mail:  bz_mgl@163.com

Cite this article: 

Houhui Yi(伊厚会), Yanli Yao(姚延立), Xin Zhang(张鑫), and Guoli Ma(马国利) High-order effect on the transmission of two optical solitons 2023 Chin. Phys. B 32 100509

[1] Yan Y Y and Liu W J 2021 Chin. Phys. Lett. 38 094201
[2] Zhou Q 2022 Chin. Phys. Lett. 39 010501
[3] Wang S B, Ma G L, Zhang X and Zhu D Y 2022 Chin. Phys. Lett. 39 114202
[4] Zhou Q, Zhong Y, Triki H, Sun Y Z, Xu S L, Liu W J and Biswas A 2022 Chin. Phys. Lett. 39 044202
[5] Zhang X M, Qin Y H, Ling L M and Zhao L C 2021 Chin. Phys. Lett. 38 090201
[6] Wang T Y, Zhou Q and Liu W J 2022 Chin. Phys. B 31 020501
[7] Li J, Yang Z J and Zhang S M 2023 Appl. Math. Lett. 140 108588
[8] Song L M, Yang Z J, Li X L and Zhang S M 2020 Appl. Math. Lett. 102 106114
[9] Zou Z F and Guo R 2023 Commun. Nonlinear Sci. 124 107316
[10] Shen S, Yang Z J, Li X L and Zhang S M 2021 Commun. Nonlinear Sci. 103 106005
[11] Han Y, Gao B, Huo J Y, Ma C Y, Wu G, Li Y Y, Chen B K, Guo Y B and Liu L 2022 Chin. Phys. B 31 074208
[12] Wang S B, Zhang X, Ma G L and Zhu D Y 2023 Chin. Phys. B 32 030506
[13] Liu X Y, Zhang H X, Yan Y Y and Liu W J 2023 Phys. Lett. A 457 128568
[14] Wang H T, Li X, Zhou Q and Liu W J 2023 Chaos Soliton. Fract. 166 112924
[15] Yu W T, Liu W J and Zhang H X 2022 Chaos Soliton. Fract. 159 112132
[16] Wang H T, Zhou Q and Liu W J 2022 J. Adv. Res. 38 179
[17] Yu W T, Luan Z T, Zhang H X and Liu W J 2022 Chaos Soliton. Fract. 157 111816
[18] Liu X Y, Zhang H X and Liu W J 2022 Appl. Math. Model. 102 305
[19] Ma G L, Zhou Q, Yu W T, Biswas A and Liu W J 2021 Nonlinear Dyn. 106 2509
[20] Wang H T, Zhou Q, Biswas A and Liu W J 2021 Nonlinear Dyn. 106 841
[21] Yu W T, Zhang H X, Wazwaz A M and Liu W J 2021 Results Phys. 28 104618
[22] Triki H, Zhou Q, Biswas A, Liu W J, Yildirim Y, Alshehri H M and Belic M R 2021 Phys. Lett. A 417 127698
[23] Veni S S and Rajan M S M 2021 Chaos Soltion. Fract. 152 111390
[24] Wang L L, Luan Z T, Zhou Q, Biswas A, Alzahrani A K and Liu W J 2021 Nonlinear Dyn. 104 629
[25] Liu X Y, Zhou Q, Biswas A, Alzahrani A K and Liu W J 2020 J. Adv. Res. 24 167
[26] Wang L L and Liu W J 2020 Chin. Phys. B 29 070502
[27] Chen J G, Luan Z T, Zhou Q, Alzahrani A K, Biswas A and Liu W J 2020 Nonlinear Dyn. 100 2817
[28] Yan Y Y, Liu W J, Zhou Q and Biswas A 2020 Nonlinear Dyn. 99 1313
[29] Yan Y Y and Liu W J 2019 Appl. Math. Lett. 98 171
[30] Sonia A, Jamshad A, Shafqat U R, Shahzad S and Asghar A 2023 Opt. Quantum Electron. 55 450
[1] Influence of the initial parameters on soliton interaction in nonlinear optical systems
Xinyi Zhang(张昕仪) and Ye Wu(吴晔). Chin. Phys. B, 2023, 32(7): 070505.
[2] Adjusting amplitude of the stored optical solitons by inter-dot tunneling coupling in triple quantum dot molecules
Yin Wang(王胤), Si-Jie Zhou(周驷杰), Yong-He Deng(邓永和), and Qiao Chen(陈桥). Chin. Phys. B, 2023, 32(5): 054203.
[3] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[4] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[5] Multifunctional light-field modulation based on hybrid nonlinear metasurfaces
Shuhang Qian(钱树航), Kai Wang(王凯), Jiaxing Yang(杨加兴), Chao Guan(关超), Hua Long(龙华), and Peixiang Lu(陆培祥). Chin. Phys. B, 2023, 32(10): 107803.
[6] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[7] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[8] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[9] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[10] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[11] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[12] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[13] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[14] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[15] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
No Suggested Reading articles found!